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ABSTRACT 

 Vulnerability of critical infrastructure systems is of the utmost importance to a 

nation’s national security interests, especially the electric grid.  Despite the importance 

of these systems and planning, disruptions continue to occur at an alarming rate, thus 

indicating a fundamental flaw in the way critical infrastructure systems are analyzed for 

vulnerability.   

 Critical infrastructure systems are typically analyzed using mathematical 

approaches such as graph theory, which strip systems of their important geographic 

information, and only look at connections between electrical stations (e.g. substations).  

While these relationships and metrics provide useful information, they cannot provide 

the entire picture.  As such, the goal of this research was to develop a new, geographic 

framework for modeling infrastructure vulnerability, that not only takes into account 

the information uncovered by graph metrics, but information about the unique 

geography of the area that can impact these systems.  Using Southeast Asia as a study 

region, the research questions probed and answered were: 

1. What are differences that arise from analyzing energy network vulnerability 

using the new geographic framework versus a graph theoretic framework 

alone? 

2. What types of evaluation methods are applicable for determining if the 

proposed framework is more effective than graph theory? 
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To answer these questions, this research developed a field-based model utilizing service 

areas as the unit of analysis.  The factors in the model were betweenness, degree, 

closeness, land use, service area population, other critical infrastructure frequency, 

natural hazard frequency, and temperature extremes.  The infrastructure nodes were 

ranked based on a weighted linear model of factor scores.  These factors were then 

weighted, using the Analytic Hierarchy Process to determine the weights, and factor 

values summed to determine an overall vulnerability ranking for each node.   

 The results indicate that many of these factors provide modest insight into the 

vulnerability of the electric grid, when validated against real-world data from the 2012 

Indian Blackout.  The most important factors were betweenness, land use, natural 

hazard frequency, and temperature extremes.  A measure of agreement between 

modeled substation vulnerability and the substation status (operation or non-

operational) during the 2012 Blackout provided the basis for effective evaluation of 

each model.
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CHAPTER I 

INTRODUCTION 

1.1. Overview 

On a daily basis, critical infrastructure makes life easier for people around the 

globe.  By definition, critical infrastructure is: the “foundation for national security, 

governance, economic vitality, and way of life” (United States (US) Government 2003).  

Critical infrastructures not only provide services that make life easier for a country’s 

citizens, but these services also create a strong national defense and a sense of national 

identity and pride.  Types of critical infrastructure may include, but are not limited to: 

energy, transportation, telecommunications, and even national monuments (US 

Government 2003).  Often these infrastructures are interconnected, and damage to one 

network of critical infrastructure can have cascading effects upon other critical 

infrastructure networks, possibly causing major damage to a country’s national security 

and identity.  The interconnectedness of these infrastructures not only extends to other 

types of critical infrastructure, but can also be extended across political boundaries; in 

many cases critical infrastructures are dependent on international agreements and cross 

international borders (Schintler et al. 2007).     

Industrialized and developing countries alike have identified the extreme 

importance of protecting critical infrastructure.  Critical infrastructure disruptions, 
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either intentional via an attack, or unintentional via natural disaster, are not infrequent 

occurrences, even for developed countries.  For instance, ten major blackouts have 

occurred in industrialized countries between 2003 and 2006 (Pearson 2011, Koger 

2008).  Incidents have even occurred as recently as July 2012, where much of the 

world’s population was without power due to a blackout in India (Memmott 2012).  

Typically, research has focused on transportation and energy networks and disruptions 

to these networks in industrialized countries.  Little research on critical infrastructure in 

less developed countries has been conducted, likely because the data to support such 

research are scarce.  Additionally, the sophisticated modeling techniques that are used 

to understand electrical grid (the network of transmission lines, substations, and power 

plants) vulnerabilities have not been able to isolate these occurrences.  Blackouts are 

still frequent occurrences.  It is clear that existing modeling techniques for determining 

vulnerabilities in the electrical grid are inadequate to project future vulnerabilities and 

incorporate into standard guidance.     

1.2. Statement of Problem 

There is a fundamental flaw in how critical infrastructure (e.g. utilities and 

transportation routes) is represented and analyzed in critical infrastructure protection 

models, as major disruptions to these systems are still occurring (Hines et al. 2010).  

Most critical infrastructures can be described and analyzed using graphs, and most 

research regarding infrastructure vulnerability has studied critical infrastructures using 

graphs (Hines et al. 2010, Arianos et al. 2009, Desmar et al. 2008, Holmgren 2007, 

Desmar et al. 2007, White and Smyth 2003).  Hines et al. (2010) did, however, indicate 
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that using only graph networks to describe, analyze, and assess networks can be 

misleading, especially in the case of vulnerability assessments. 

Graphs are generally comprised of two components: nodes (or vertices) and links (or 

edges).  In an energy network, a node might be a power station or a substation, while a 

link would be the transmission line between the power station and substation.  Each link 

contains one or two nodes, called endpoints (Figure 1.1).   

         

 

     Figure 1.1: Representation of a graph. 

 

These graphs also have a variety of properties that reveal information about the 

graph.  Nodes, links, and endpoints are just a small subset of the properties that can 

describe a graph.  A few other common properties of a graph or its elements might 

include are degree, geodesic path, diameter, and betweenness.  The degree of a node 

refers to the number of links that are connected to the node.  The geodesic path 
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describes the shortest path through the network from one node to another.  The 

diameter of the network is the number of links of the longest geodesic path between 

two nodes (Gross and Yellen 2003).  Finally, betweenness indicates the number of links 

that pass through a node (Rocco et al. 2011). 

Failures in the electrical network still occur, despite the abundance of graph-based 

techniques for analyzing critical infrastructure vulnerabilities, advances in techniques for 

analyzing vulnerabilities, and technologies analyzing the electrical grid.  While graph 

approaches, such as the centrality metric betweenness, are useful and provide a great 

deal of information about the electrical grid and its interdependencies, there are 

shortcomings to only utilizing these approaches (Hines et al. 2010, Kim and Obah 2007, 

Holmgren 2006).  This dissertation research utilized betweenness to refer to 

vulnerabilities as defined by graph metrics.     

One major shortcoming of graph-based approaches is the lack of data availability 

and standardization to support such analysis.  Even in developed countries, data about 

critical infrastructure, especially the energy grid, may be proprietary and difficult to 

access.  Additionally, critical infrastructure models often suffer from a Data Death Spiral 

(Bhaduri 2013).  Initially, data are only available in an aggregated form, and the critical 

infrastructure models were built to ingest these data.  Eventually, models were built to 

perform simulations on parallel platforms and were able to answer new questions; 

however, these new models require finer spatial resolution data.  Such fine resolution 

data are not available because the models that were created never required this level of 
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granularity.  It is a cycle that has limited the development of the granular infrastructure 

models that are really needed to understand critical infrastructure systems.     

Another shortcoming of graph theoretic approaches was that they do not 

provide any great detail to geographic characteristics of the surrounding area that might 

contribute to a network’s vulnerability.  Hines et al. (2010) indicate that while graph 

metrics provide information about the general vulnerability of the network, these 

metrics are misleading when viewed alone and without ancillary information.  First, 

graph and simulation approaches do not address infrastructure service areas, or the 

area with which the infrastructure serves.  The attributes of the service area may make 

a node more or less vulnerable depending on the characteristics it encompasses.  For 

example, the loss of nodes (substations) “a” and “b” may each cut off energy from two 

additional nodes on each side of an electrical network (Figure 1.2).  If node “b” has a 

service area with very few clients (such as in a rural area), it may be less critical than 

node “a,” which serves more people or contains critical facilities, such as a hospital 

(Figure 1.2).  In this example, these two nodes might be ranked equally vulnerable by 

graph approaches that do not include characteristics of the population (absolute 

number, income, age, etc) within the service area.  Alternatively, the node that serves 

more people and/or contains medical facilities (such as a hospital) may be regarded as 

more vulnerable and critical and should have a higher rank, indicative of higher 

vulnerability.  If a natural disaster were to strike, and decision makers only looked at 

betweenness, substations “a” and “b” would have the same vulnerability, when in 
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reality substation “a” is more vulnerable due to the higher population and higher 

frequency of critical assets. 

 

  

 

Figure 1.2: Example of characteristics affecting criticality and vulnerability, not just the 

topologic/structural characteristics. 

 

Additional examples of the usefulness and importance of a geospatially integrated 

approach include the occurrence of a natural disaster, where a controlling authority 

(e.g. state government, private utility) may want to divert a node’s power to serve only 

the areas with the greatest amount of people and the most critical infrastructure, such 

as hospitals, fire departments, and shelters.  In this case, the controlling authority may 

choose to shut down substations that serve fewer people and divert that power to a 

node with larger concentrations of critical infrastructure and population.    Another 

operational example is the combinations critical infrastructure (CI) protection models 

with natural disaster reduction models.  Present models are reactive in response to an 

b 

a 
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event; however, vulnerability trends are leaning more towards risk reduction (Seck 

2007).  Combining CI protection models with the attributes of the geographic area, such 

as past frequencies of natural disasters, might identify areas where humanitarian 

assistance organizations can focus their funding efforts on reduction of risk to natural 

disasters in the critical infrastructure context (Seck 2007).  A different, but also viable 

example of such an approach is from a military operations standpoint, where it may be 

desirable to identify the node that disrupts the greatest number of people or critical 

facilities.  In such applications, the goal may be to cause the greatest harm rather than 

minimizing harm.  (The converse use of such modeling is to predict likely targets on 

electrical infrastructure by terrorists.) The use of graph modeling alone would not 

appropriately rank the nodes utilizing these service area attributes.  The modeling 

framework developed by this research can be applied to these example problems of 

predicting electrical nodes that serve infrastructure of greatest interest. 

1.3. Research Goals 

The goal of this research was to develop, demonstrate, and validate a combined 

graph/field-based modeling framework for modeling vulnerability from disruptions in a 

critical infrastructure network.  This dissertation research addresses limitations in graph 

theoretic models with the addition of field-based (a ‘field’ in Geographic Information 

Science is a representation of geographic space as a continuum) modeling methods.  

This dissertation research provides a more effective method of analyzing critical 

infrastructure networks for vulnerabilities by incorporating spatial attribute information 

from a variety of sources to determine the most vulnerable nodes.   
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1.4. Research Objectives 

This dissertation research created a modeling framework for analyzing energy 

infrastructure networks to determine the relative vulnerability of nodes.  Nodes 

(substations) are defined as the central point at which energy is distributed.  The 

modeling framework couples graph theoretic approaches with pertinent attribute and 

geographic attribute data to help reduce overall time spent analyzing networks 

(Pertinent attribute data is discussed more extensively in Chapter 2.).  The combination 

of a graph-theoretic approach with an area field-based modeling approach creates a 

framework that, when implemented, takes into account the uniqueness (i.e. “place-

based”) of the area of interest. 

The combination of betweenness with geographic data (i.e. 2 or 3-dimensional) 

creates a unique problem with the unit of analysis.  Substations are typically 

represented as points; however, they serve geographic areas that vary in size depending 

on the capacity of the substation.  Using geographic data only at the point location of 

the substation to determine its vulnerability is misleading.  As such, the unit of analysis 

in this research was substation service area, which provides a more appropriate 

representation of the unique area the substation is servicing.  Service areas, and the 

problem and process for determining service areas are described in greater detail in 

Chapter 3. 

1.4.1. Research Objectives include: 

1. Identification of representations of factors; and  
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2. Identification of the relationship between the joint combinations of 

factors when identifying vulnerabilities in the electric grid (e.g. 

population characteristics and node/link characteristics, or land use and 

population) using a raster-based Weighted Linear Combination (WLC) 

model. 

After this analysis framework was created, the overall research questions were 

probed: 

1. What are differences that arise from analyzing energy network vulnerability 

using the new integrated framework versus a graph theoretic approach? Are 

these differences substantial? 

2. Where are the critical and vulnerable nodes in Southeastern Asia? 

Southeastern Asia for the purposes of this research comprises India, Bhutan, 

and Nepal.  One reason for using Southeast Asia as the study area is this 

region has a unique electrical network, where certain areas have little 

western influence.  Additionally, Indian experienced a widespread blackout in 

July 2012, making it of increasing interest to determine where vulnerabilities 

in their electrical grid lie.  A more detailed explanation of the study area 

justification can be found in Chapter 3.   

3. What types of evaluation methods are applicable for determining if the 

proposed framework is more effective than a graph theoretic approach? 

Effectiveness in this case refers to the performance of the approaches for 
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determining substation vulnerability (i.e. ability to correctly rank a substation 

in a historic blackout).       

1.5. Dissertation Structure 

 This dissertation is separated into five chapters.  These chapters include such 

information as a comprehensive literature review, methods, results, and conclusions.  

Chapter 2 presents a literature review of the previous research conducted on critical 

infrastructure vulnerability, and its applications in graph theoretic and geographic 

information science literature.  Chapter 3 discusses the methods and data sources 

utilized; it also presents the research structure.  Chapter 4 presents the results of the 

research.  Finally, chapter 5 discusses the results and conclusions that can be drawn 

from this research and presents future directions that may be explored. 
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CHAPTER II 

LITERATURE REVIEW 

The issue of critical infrastructure vulnerability and criticality is an interdisciplinary 

issue that requires the synthesis of information from a variety of disciplines. As such, 

this dissertation research draws from literature in Geographic Information Science (GIS) 

and GIS-based modeling, graph networks, and vulnerability science.  The sources of 

literature consisted of the Internet databases Web of Science and Google Scholar, and 

consisted of English language literature.  This excludes literature that may have been 

written in other languages such as Hindi, Nepali, Dzongkha, and Chinese.  However, 

there were collaborations with foreign counterparts in both India and Bhutan, who have 

indicated that literature on this topic is negligible.  Also available and of interest is the 

methods and research conducted by the U.S. National Laboratories, such as Oak Ridge 

National Laboratory and Los Alamos National Laboratory.  Through the support of the 

National Laboratories this “gray” literature was also reviewed.    

2.1. GIS-Based Modeling 

GIS-based modeling attempts to emulate the real world, in a simplified way, for the 

purposes of either understanding the biophysical processes or simply predict the 

outcomes of such processes. The application of GIS-based modeling extends to a variety 

of disciplines, including, but not limited to, environmental studies, epidemiological 

studies, and urban analyses.  GIS-based models can take a variety of forms:
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descriptive or predictive; verbal or graphical; static or dynamic.  Verbal models are 

simply stated with words, while graphical models are depicted using graphs, charts, and 

figures.  Static models are usually indicators, while dynamic models depict a process 

through time (Maguire et al. 2005).   

Implementing models in a GIS environment can be accomplished in a number of 

different ways.  The modes of implementation include loosely coupled, closely coupled, 

and embedded models, characterized by the degree of integration with a GIS system 

and its geospatial database.  In loose coupling, a model exists outside of a GIS, where 

the model’s output is not in a format that is read into a GIS.  The data can be converted 

and then ingested into a GIS database for further analyses and visualization.  One 

example of a loosely coupled model is running an Analytic Hierarchy Process (AHP) in a 

stand-alone program, and then bringing the results into ArcGIS for further processing.  

Close coupling includes a model that is outside of a GIS; however, the model’s output is 

directly ingestible into a GIS and/or the model can directly use geospatial data.  Closely 

coupled models, also called tightly coupled, include the Urban Flood Model for ArcGIS, 

which integrates the urban flood model into ArcGIS (Kang 2010). Embedded models are 

models that are implemented within a GIS, such as those developed using model 

builder.  Each implementation technique has its own advantages and disadvantages. For 

example, loosely coupled models require little time to integrate, require more extensive 

data management methods and have a very low capability for executing tasks 

simultaneously.  Embedded models require more time to integrate; however they may 

be much faster and require less data management (Maguire et al. 2005; Westervelt 
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2002; Goodchild et al. 1993).  Inevitably there are tradeoffs with any integration 

technique; however, it is up to the modeler to determine which approach will work best 

for their research question. 

2.1.1. GIS-Based Infrastructure Modeling 

       Much of the modeling with regards to CI protection is within the realm of simulation 

or graph metrics (graph metrics are discussed in section 2.3.3).  One of the major 

missions within the simulation and CI protection community has been the 

interdependencies within CI.  The National Infrastructure Simulation and Analysis Center 

(NISAC) developed the Interdependent Energy Infrastructure Simulation System (IEISS).  

IEISS is an actor-based model that utilizes not only the interactions within a critical 

infrastructure system (e.g. actors within electrical grid components, such as between 

transmission lines and substations) but also among them (e.g. corresponding parts of 

the electrical grid and natural gas system).  The IEISS model analyzes the 

interdependencies among critical infrastructure networks by looking for potential 

cascading failures and the links between one CI network and another CI network to 

determine the further effects of failures in one system (Bush et al. 2003).   

 IEISS, like many other CI protection models, lacks a general data format for input 

and output, which makes integrating the IEISS model with complementary models 

difficult.  Los Alamos National Lab (LANL) developed a Service Oriented Architecture 

called Hydra that integrates models such as IEISS and complementary models and 

associated data, and makes the models easily accessible to the user (Bent et al. 2009).  

The interface for Hydra is a web-based approach where the user accesses the models 
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through web services.  The major disadvantage to this approach is that if a web service 

is down, there is no way to access the models.  The approach proposed by this 

dissertation research is an approach that is located within ArcMap™, which can either 

be part of a web service or stand alone, and its purpose can be adjusted to the situation.  

The approach in this dissertation can quickly be changed from a strategic military 

standpoint to natural disaster reduction.  The dissertation model, like Hydra, can be 

integrated for a number of different missions, but may be adjusted by the researcher 

within the ArcGIS™ environment and does not need to (but can) access a web service.               

2.1.2. Spatial Decision Support Systems 

The GIS-modeling approach in this dissertation research is set in the context of a 

decision-making environment: deciding which service areas are most vulnerable.  

Jankowski (1995) identified two perspectives on using GIS for decision support.  The 

perspectives include GIS as being the center of a Spatial Decision Support System (SDSS) 

and integrating GIS with specialized models.  The SDSS perspective utilizes GIS to 

generate, evaluate, test, and provide recommendations to spatial decision problems.  

The integration perspective utilizes existing models and works to incorporate the 

models into a GIS (Jankowski 1995).   

Multi-criteria decision analysis (MCDA) has been used with energy infrastructure; 

however, MCDA has been utilized in other applications besides determining network 

vulnerability and criticality.  For example, MCDA was utilized by Wang et al. (2001) to 

determine the best method of restoring an electrical system in response to a failure.  

Additionally multi-criteria methods were also used for ranking potential failure of 
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equipment in energy substations (Moreira et al. 2009). The framework in this 

dissertation research consists of ranking the most critical and vulnerable service areas in 

a network.  Ranking each service area requires examination of various criteria.  Each 

criterion is assigned associated weight, indicating the criterion’s relative importance to 

the service area’s rank.  For example, a service area’s access to resources may not be as 

important as the service area population, so the access to resources would be weighted 

less than service area population.  MCDA easily allows for the weighting of such criteria.     

GIS-based MCDA has been widely used and researched for the last 15 years, 

especially in land suitability and planning scenarios.  Several methods have been 

developed for GIS-based multi-criteria decision analysis, including weighted summation 

and outranking methods.  Of the MCDA methods, weighted summation is the most 

widely used method, as reflected in some 39% of the articles Malczewski (2006) 

surveyed.  Malczewski (2000; 2006) cited that the wide use of weighted summation 

methods is due to the easy application of the methods in GIS with map algebra.    

WLC involves several steps, many of which have been overlooked when applying 

WLC in a GIS environment (identified in Figure 2.1).  Many researchers who utilize WLC 

in a GIS environment fail to have a complete understanding of the assignment of 

weights and deriving attribute maps.  Despite the lack of complete understanding, WLC 

has been widely used in GIS-based decision rules (Malczewski 2000).  Defining a set of 

attributes can often be the most difficult and controversial task.  The attributes must be 

comprehensive, measureable, complete, operational, decomposable, non-redundant, 

and minimal.  Creating maps of these defined attributes requires that each of the 
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attributes be transformed into comparable units, so that they can be compared 

between and among each other.  Defining factor weights is central, and the most 

controversial part of using WLC, to making sure that the method represents the relative 

importance of factors to decision makers.  However, inappropriate use of weights (or 

the assumption of equal weights) is common in GIS applications of WLC.  Several 

methods of defining weights have been developed to help reduce the bias associated 

with arbitrarily assigning weights.  These weight definition methods include the swing 

weights technique and Analytic Hierarchy Process (AHP).  The swing weights technique 

requires the decision maker to answer questions about their preferences.  Alternatively, 

AHP requires pairwise comparisons of attributes and will be described more fully in the 

next section.  Aggregating the attributes and weights utilizes Equation 2.1, where the 

summation of each attribute’s weight and value are determined for each location 

(Malczewski 2000).   

����� = 	�	
��

�

 

where: wj= weight 

rij=value for j-th factor 

i = location 

Finally, after the weights and the attribute values are combined, the alternatives are 

ranked.  Typically, this includes a rank order where a value of 1 indicates the best 

alternative and 0.0 the worst alternative (Malczewski 2000).   

 

Equation 2.1 
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Figure 2.1: Weighted Linear Combination (WLC) steps in a GIS environment. 

 

Little to no research has explored the use of attribute-based GIS suitability models in 

assessing the vulnerability and criticality of energy networks.  One Master’s Thesis 

conducted by Lemon (2004) utilizes AHP to help identify critical locations in electrical 

infrastructures; however, Lemon’s method attempted to identify critical locations at the 

town level, which is much finer identification scale than required by this research.  

Additionally, Lemon’s research did not involve national critical infrastructure networks, 

as required by this dissertation research.  Most research involving vulnerability and 

criticality of energy networks focus on purely graph theoretic approaches, with few 

branching out to include the role of energy flow through the links (Arianos et al. 2009).    

2.1.2.1. Analytic Hierarchy Process 

A major controversy surrounding the use of WLC and many other methods for 

MCDA is the assignment of weights.  The arbitrary assignment of weights and the bias 
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associated with that assignment is a major limitation of the use of WLC; however, to 

help reduce this limitation, Saaty (1994, 2008) introduced the AHP.     

Saaty (1994) maintains that a decision making approach should have five 

characteristics: the approach should be simple, adaptable to groups and individuals, 

natural, encourage compromise, and not be difficult to master or communicate.  Saaty 

(1994) defines AHP as structuring a problem as a hierarchy, where the problem is 

decomposed into its most general factors and aggregated the solutions of the sub 

problems into a decision.  Once the options are defined, a cost/benefit analysis must be 

conducted (Saaty 1994).   

Once the criteria are defined, these criteria can be used in a pairwise comparison 

of relative importance to determine the relative weight of each criterion.  The pairwise 

comparisons, termed “judgments” by Saaty (1994), are numerical representations of a 

relationship between two elements, representing the strength of the relationship (Table 

2.1).   The pairwise comparisons are set up like a matrix (Figure 2.2).  If the element on 

left is less important than that on the top, enter the reciprocal value.  If the element on 

the left is more important than that on the top, enter the whole number value (Table 

2.1).   
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Table 2.1: Benchmark Pairwise comparison numbers for AHP as described by  

Saaty (1994).  These, and in-between values, are always used. 

 

Intensity of Importance Definition Explanation 

1 Equal Importance Contribute equally to the 

objective 

3 Moderate Importance Slightly favor one activity 

over another 

5 Strong importance Strongly favor one 

activity over another 

7 Very Strong Dominance is 

demonstrated in practice 

9 Extreme importance Evidence favoring one 

activity over another is 

highest possible 

 

 

 

                  Figure 2.2: An example of an AHP matrix. 

 

From the paired comparisons, priorities are calculated.  The weights can be 

determined by either normalizing each column of priority values for each criterion for 

consistent matrices (see below) or by computing the eigenvalues for inconsistent 

matrices (Saaty 2008).   

With any method that includes human input, there must be a method to validate 

the weights determined as a result of this method.  The method utilized is the 

Consistency Ratio (CR).  The CR is calculated by comparing the inconsistency of the set 
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of judgments in a given matrix to the inconsistency of the set of judgments and the 

corresponding reciprocals taken at random scale (Equation 2.2).  

�� = ���� 

Where:  

CI = Consistency Index 

RI = Random Consistency Index 

The consistency index indicates that the largest eigenvector (����	) should be equal to 

the size of the comparison matrix (Equation 2.3) 

 

�� = 	���� − �� − 1  

 

The random consistency index (RI) offers a test statistics that compares the results from 

the RI to the number of items in the pairwise comparison (Table 2.2).  Table 2.2 is based 

on the average random consistency index for a sample size of 500 matrices. For 

example, if there are four items in the comparison matrix, the RI is 0.9.    

 

           Table 2.2: Table for determining the random consistency index. 

N 2 3 4 5 6 7 8 9 10 

RI 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.51 

 

If the consistency ratio is less than or equal to 0.10 the inconsistency is acceptable 

(Saaty 1977, 1994). 

 

Equation 2.2 

Equation 2.3 
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2.1.2.2. AHP in GIS and Alternatives 

AHP has, in some applications, revolutionized the way weighting factors is 

conducted in GIS.  The application of AHP has helped reduce the bias and subjectivity of 

weights in these types of analyses.  Research that has utilized AHP includes land-use 

suitability analyses (focusing on site-suitability), land use management issues, and land-

use planning (Sener et al. 2010, Ohta et al. 2007, Ma et al. 2005).  To a lesser extent, 

AHP has also been integrated with GIS for hazard and environmental assessments 

(Rahman et al. 2009, Li et al. 2010). 

The majority of the integration of AHP and GIS has been through close coupling, 

where the process of determining the weights through AHP is done outside of a GIS 

(Sener et al. 2010, Ma et al. 2005).  In many cases, these analyses utilized AHP for the 

selection of weights for generating the suitability maps.  For example, Ma et al. (2005) 

combined the Pass/Fail Screening, AHP, and WLC to derive suitability maps.  Xu et al. 

(2012) combined AHP with WLC to evaluate the environmental suitability for living in 35 

cities in China.  Rahman et al. (2009) utilizing the same method for soil erosion hazard 

evaluation.  While the method for combining AHP with GIS has considerable similarities 

among the various applications, few researchers have attempted to embed AHP into GIS 

(i.e. create an “embedded model”). 

Research that has embedded AHP into GIS is sparse.  Exceptions to this include the 

implementation of AHP developed in Visual Basic for Applications (VBA) for ArcGIS by 

Marinoni (2004) and the implementation of AHP and ordered weighted averaging 

(OWA) developed by Boroushaki and Malczewski (2008).  Both tools are available for 
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open download on the ArcGIS’s ArcScripts developer’s page.  The AHP for ArcGIS 

extension developed by Marinoni (2004) utilizes integer raster datasets, ingests them, 

reclassifies them based on user input, requires input into the pairwise comparison 

matrix, and outputs a suitability raster dataset.  Both approaches are easily integrated 

into legacy ArcGIS environments; however, both approaches require a fairly in depth 

understanding of AHP.  The AHP-OWA extension developed by Boroushaki and 

Malczewski (2008) uses fuzzy quantifiers.  The major difference between Boroushaki 

and Malczewski’s (2008) approach and that of Marinoni (2004) is that instead of using a 

weighted linear combination to calculate the local scores for the raster cells, it uses a 

variety of local aggregations.  Both approaches require that the user be able to fill in the 

comparison matrix, which may be difficult for a decision-maker who might want to 

utilize the methodology.  Some closely linked models have used graphical user 

interfaces (GUIs) for the AHP calculations that utilize a slider bar (from most to least 

important) and populates the comparison matrix based on the user’s selection along the 

slider bar.  The matrix output was stored in a database that was then ingested into 

ArcGIS (Thirumalaivasan and Karmegam 2001).     

While AHP is widely used for determining the weights for criteria in multi-criteria 

decision analyses, other methods have been utilized.  One method is the ranking 

method, where the criteria are ranked by decision maker preferences, arbitrarily.  

Another method is the rating method, where criteria are rated on a pre-determined 

scale (Drobne and Lisec 2009).  For example, if a decision maker is trying to decide 

which land would be most suitable to place their new store, they may have a rating 
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system of 1 to 5, rating the importance of each criterion.  Criteria may have the same 

rating in this method.  While these methods are easily implemented, especially in a GIS, 

they are incredibly subjective.   

2.1.3.  Scale of Analysis 

There are different observational scales available for analysis when discussing and 

analyzing electrical power networks.  Holmgren (2007) discussed the general structure 

of an energy network, but not the specific components of the network.  The 

observational scale may be at the transmission, sub-transmission, or distribution grid 

level.  A typical transmission grid contains power stations (or power plants), 

transmission lines, substations, and transformers.  Electrical energy typically flows from 

a power plant through transmission lines to substations, and finally to transformers that 

reduce the voltage to transmit to users (Brown and Sedano 2004).  This dissertation 

research will only assess criticality and vulnerability of the network to the substation 

(service area) level due to data availability and ability to understand at the overall 

system (Figure 2.3).    
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Figure 2.3: Power grid levels (source:                    

http://venturebeat.files.wordpress.com/2010/10/grid.jpg, 2010). 

 

 

2.1.4. Analysis Issues 

This dissertation research needed to divide the network landscape into service 

areas.  The characteristics of each service area, such as population, are not measured at 

a point (node) or at the service area level, so aggregation is necessary.  Population 

censuses typically use historically formal units in the United States and other countries 

(e.g. block-group or census tract) or other non-electrical service area regions.  This 

aspect of the analysis ignites the modifiable areal unit problem (MAUP).  MAUP is often 
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observed in two perspectives.  The first scope is when the geographic scale of analysis is 

changed, the results also change.  The second scope, which is exemplified by this 

research, is the “zonation problem.”  The second scope refers to the variation in results 

that is observed with different divisions of an area (Green and Flowerdew 1997).   

MAUP is a geographic problem that has plagued geographic analysis since it was 

formally identified in 1934 by Gehlke and Biehl (Green and Flowerdew 1997).  However, 

since MAUP’s identification, several methods have been developed to minimize its 

effects.  Langford and Higgs (2006) analyzed three different modes of representing 

population in catchment areas.  The population distribution models they defined use (1) 

a weighted population centroid in the catchment area, (2) an evenly distributed 

population within the area, and (3) a dasymetrically distributed population. Langford 

and Higgs (2006) found that the method of population dispersal had a large impact on 

the modeling outcomes, but found that the dasymetric method gave the most realistic 

representation. 

2.2. Model Evaluation 

Any GIS model needs to undergo verification and validation to ensure that the 

model behaves as it was designed and that it mimics real life, respectively.  Sensitivity 

analyses also evaluate model stability.  Despite the importance of evaluating a model’s 

performance, very little attention has been paid to these steps in multi-criteria decision 

analyses (Delgado and Sendra 2004). 
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2.2.1. Verification 

Verifying a model requires the modeler to have an understanding of how the model 

is meant to operate and what the results should be.  Often verifying requires the 

modeler to take a small subset of the data and test the algorithms by hand and compare 

them to the model output.  Additionally, the repeatability of the model can be 

determined by running the model several times and subtracting the resulting rasters, 

which should yield pixel values of zero for the entire area (Demers 2002).  In other 

words, for deterministic models the results should be consistently the same. 

2.2.2. Validation 

Determining a model’s validity is often seen as more difficult than verifying it.  In 

many cases, model validation is performed using field validation methods; however, 

field validation does have drawbacks: it is expensive and time consuming.  An additional 

drawback is that many GIS models seek to predict future conditions, which make it 

impossible to use field validation methods (Demers 2002).   

2.2.3. Sensitivity Analysis 

Sensitivity analyses (SA) of models often include examining the variation of model 

outputs when the numerical input parameter values are varied.  Very few studies in the 

GIS-based multi-criteria decision analysis (MCDA) realm have utilized SA to evaluate 

their models and results (Delgado and Sendra 2004).  Of the greatest interest in 

evaluating GIS MCDAs is the uncertainty introduced when varying the factor weights 

(Chen et al. 2009, Tate 2013).  The most widespread use of SA, albeit limited, is the 

changing of the weights of the criteria to determine changes to the overall outcome 
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(Delgado and Sendra 2004).  In response to Delgado and Sendra’s (2004) analysis, Chen 

et al. (2009) developed a method of SA for AHP multi-criteria decision analysis research.  

According to Chen et al. (2009), the best SA tool for MCDA would take into account 

several levels of uncertainty, including identifying which criteria are most sensitive to 

weight changes and visualizing the spatial changes.  Chen et al. (2009) recommends a 

systematic approach to AHP spatial MCDA SA.  This includes a series of simulations 

where each criterion is changed by a certain percentage to see how the overall results 

are affected and to see how the number of pixels for each criterion is affected per 

iteration of simulations (Chen et al. 2009).  Tate (2013) also provided uncertainty 

analyses for social vulnerability indices, finding that the most uncertainty comes from 

the identification of weights in vulnerability indices.               

2.3. Graph Theory Analyzing Critical Infrastructure 

Several graph-theoretic approaches have been utilized in past research to determine 

the vulnerability of critical infrastructure networks of developed countries.  Indices, such 

as average path length (the distance between two vertices), clustering coefficient 

(density of triangles in the network), and degrees (number of links connected to one 

node) are often used to determine vulnerability of a node.  In these approaches, failures 

in the network are modeled by removing a node from the network.  These node 

removal models remove nodes of decreasing degree order (Holmgren 2007, Hines et al. 

2010).  One of the negative aspects of the node-removal method way of determining 

critical infrastructure, especially energy infrastructure, is that removing nodes is 

computationally intensive, and may not allow for quick decision making.   
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Other research has focused on centrality measures within graph theory; nodes with 

high centrality have a larger impact on other nodes in the network (Demsar et al. 2007, 

Demsar et al. 2008, White and Smyth 2003).  Demsar et al. (2007) compared the 

measures of degree, closeness, and betweenness. Degree (d) refers to the number of 

neighbors.  Closeness refers to the shortest distance of a node to every other node, and 

is evaluated using (Equation 2.4). 

 

����� = 	 � 2�� �!,#�
#$%/!

 

 

Betweenness refers to the number of links that pass through a node or more precisely 

the “proportion of shortest paths between every pair of vertices that pass through the 

given node.”  Calculations for betweenness are conducted using (Equation 2.5) (Rocco et 

al. 2011, pg 2).  

 

�'��� = 	 � ()#���
()#)*!*#$%

 

Where: ()#= total number of shortest paths from node s to node	t	

()#��� = number of paths between s and t passing through � 

 

Desmar et al. (2007) found that betweenness is the best measure for determining 

vulnerable nodes in a network, because it is the only measure that was linked to the 

flow in the network.  Disadvantages of other measures include 1) degree is only a local 

Equation 2.4 

Equation 2.5 
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measure and 2) closeness describes only how well a node is embedded within the 

network (Desmar et al. 2007).   

More complex graph theory concepts have also been developed to determine 

vulnerabilities in the power grid.  Arianos et al. (2009) describe a variety of concepts 

related to power grid vulnerability.  Arianos et al. (2009) describe efficiency and a critical 

component as one whose loss would cause the greatest loss of efficiency.  Arianos et al. 

(2009) adapted the idea of minimum path length and global network efficiency to 

include the impedance of and the power that flows through each link, and used the 

resulting metric to determine the vulnerability of power grids. 

Using the described graph theoretic techniques only assesses a network’s 

topological characteristics.  Graph theoretic approaches only take into account the 

nodes and links within the network, which disregards other external characteristics that 

might contribute to a network’s vulnerability.  Hines et al. (2010) indicate that 

topological graph theory solutions, while providing information about general 

vulnerability of a network, are misleading when viewed alone without ancillary 

information.  Holmgren (2006) and Kim and Obah (2007) also indicates that a graph 

theoretic approach in electric power grid vulnerability studies has a variety of 

shortcomings; however, graph metrics have utility, especially in coarse scale studies 

(such as those at the country or continent level).      

2.3.1. Graph Theory in GIS 

Graph theory literature has had a place in the mathematics and engineering 

disciplines for many decades, but its research base in GIS literature is limited.  There are 
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two recognized data models for network data in GIS: topological data models and pure 

network data models (Curtin 2007).  An example of topological data models is the 

Census Bureau’s Dual Independent Map Encoding (DIME) data format.  Then in 1980s 

the Census Bureau recognized the importance of maintaining topological properties for 

network data, especially roads, so the Census Bureau utilized the DIME data format, 

which was ultimately superseded by Topologically Integrated Geographic Encoding and 

Referencing (TIGER) (Curtin 2007).  Curtin (2007) indicates that the “dual independent” 

refers to the identification of topological information between nodes and along links.  

Pure Network Data Models need to have the ability to support turns and directed links.  

Examples of pure network data structures have become available recently, such as 

Geometric Network and Network Data Set (ESRI) and Geographic Data Object Networks 

(Intergraph) (Curtin 2007). 

Graph theory analysis in GIS is rather limited.  Recent applications in GIS are linear 

referencing and routing.  Routing often includes such measures as routing between 

locations, creating service areas, and creating origin-destination (OD) matrices (Curtin 

2007).  The limited applications of graph theory in GIS are likely due to network design 

and location problems. Newer, more recent advances, have tried to incorporate graph 

metrics into landscape connectivity and urban metric toolbars for ArcGIS (Goetz et al. 

2009; Sevtsuk and Mekonnen 2012).  Many tools for GIS have been developed looking at 

landscape networks and landscape connectivity with graph metrics, such as HabMod, 

ConnMod (Duke Marine Geospatial Ecology Tools), and FunConn (Space-Time Aquatic 

Resources Modeling and Analysis Program).  Sevtsuk and Mekonnen (2012) introduced 
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an open source approach, the Urban Network Analysis toolbox, which makes centrality 

metrics available to a wider consumer base. The Urban Network Analysis toolbox can 

calculate such centrality metrics as reach, gravity index, betweenness, closeness, and 

straightness; however, its main purpose is for urban networks.     

2.4. Vulnerability Science 

Understanding a system’s vulnerability is imperative to its protection.  Despite the 

importance of understanding vulnerability and the contributions that vulnerability 

science can make to the protecting critical infrastructure and other matters of national 

security, vulnerability is not well measured by many researchers and government 

entities.  Different disciplines and even governments define vulnerability in different 

ways, which often may conflict and cause differences in research results.  While the 

importance of consistent definitions across disciplines cannot be dismissed (National 

Research Council 2006), even more imperative is clearly defining what vulnerability 

science definitions are being implemented in this dissertation research. 

2.4.1. Important Terms Defined 

A variety of vulnerability science concepts will be utilized by this research and need 

to be clearly defined.  Terms that need to be defined for this research include: 

vulnerability, risk, exposure, and criticality.  Depending on which discipline the definition 

is derived from, these terms may be used interchangeably; however, they have 

fundamental differences between and among disciplines.   
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2.4.1.1. Risk 

The definition of risk often includes, with varying degrees, components of all of the 

terms (vulnerability, exposure, and criticality).  The Department of Homeland Security 

(DHS) defines risk as the “…potential for an unwanted outcome resulting from an 

incident, event, or occurrence, as determined by its likelihood and the associated 

consequences” (DHS 2008, pg. 24).  This definition only tangentially mentions 

vulnerability and exposure; however, an extended definition specifically mentions 

vulnerability.  Vulnerability experts during the Intergovernmental Panel on Climate 

Change (IPCC) define risk more robustly as the “…possibility for adverse effects in the 

future…, “ but the IPCC indicates that risk has several components including exposure to 

a hazard and vulnerability (Cardona et al. 2012, pg. 69).  This research will utilize 

Cardona et al.’s definition of risk, where risk is a function of exposure and vulnerability.     

2.4.1.2. Vulnerability 

Vulnerability is another determinant of risk, as described by Cardona et al. (2012).  

The definition of vulnerability is by far the most debated and least agreed upon.  This 

research draws from a variety of different disciplines, including geography, vulnerability 

science, critical infrastructure, geographic information science, and national security, 

whose definitions of vulnerability are very similar, but are also different.  In the hazards 

discipline, vulnerability is often seen as “. . . the propensity of exposed elements such as 

human beings, their livelihoods and assets to suffer adverse effects when impacted by 

hazard events” (Cardona et al. 2012, pg. 69).  However, this definition has changed and 

evolved over time from vulnerability as an intrinsic risk to a more dynamic, multi-
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dimensional, and process-oriented definition (Birkmann 2006).  Many frameworks for 

discussing vulnerability have been proposed including place-based frameworks such as 

the hazards of place vulnerability model.  The hazards of place model is an exploratory 

framework, which explores a variety of elements, such as hazard potential, geographic 

context, social fabric, biophysical vulnerability, social vulnerability, risk, and mitigation, 

to ascertain the unique vulnerability of places (Cutter 1996).  Risk and mitigation work 

together to identify hazard potential.  The hazard potential is combined with the social 

fabric for an understanding of social vulnerability, and hazard potential is also combined 

with geographic context to ascertain biophysical vulnerability.  The intersection of social 

and biophysical vulnerability yields the vulnerability of places (Cutter 1996). 

Vulnerability in the national security realm has a less robust definition.  DHS defines 

vulnerability as a “…physical feature or operational attribute that renders an entity open 

to exploitation or susceptible to a given hazard” (DHS 2008, pg. 34).   The extended 

definition makes no reference to any other source other than the physical vulnerability.  

Social vulnerability or other population characteristics are not described in this context. 

Vulnerability is also described in the critical infrastructure research; however, there 

is no widely accepted definition of vulnerability for technical applications (Holmgren 

2007).  Holmgren (2007) describes vulnerability as the susceptibility to threats and 

hazards that reduce the ability of a system to maintain its critical function.  Gnansounou 

(2008) utilizes a similar definition, defining vulnerability as the inability “…of a system to 

cope with selected adverse events” (pg. 3735).  
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This dissertation research will adopt, in large part, the DHS definition of 

vulnerability.  While DHS’s definition of vulnerability is not as holistic as the definitions 

and frameworks provided by the hazards discipline, it is a functional definition that will 

be well-understood by the intended end-users of this dissertation research.  

Additionally, with the dissertation research focus being on less developed countries 

(LDCs), many of the data required by vulnerability frameworks from the hazards 

discipline either are not available or are extremely difficult to obtain. 

2.4.1.3. Criticality 

The criticality of infrastructure system components is important to identify and 

understand.  Some research in electrical infrastructure use the terms criticality and 

vulnerability interchangeably; however, criticality and vulnerability are inherently 

different.  Criticality is defined by the loss of a particular network component causing 

the loss of a critical function. Research often uses topologic characteristics of a graph to 

articulate criticality in a network system (Demsar et al. 2008; Zio and Sansavini 2011).   

There is an essential difference between criticality and vulnerability that most 

critical infrastructure research does not enumerate.  The difference between these 

terms is that is that each critical infrastructure system has a critical mission, which is 

often defined by the decision maker and may change at any given time (Quirk and 

Fernandez 2005).  For example, for energy infrastructure, the critical mission may be to 

maintain power to the citizens, or even more simple than that: maintain power to a 

hospital.  Just because a particular node is critical to this mission (maintaining power), 

thus, having a high criticality, does not necessarily mean it is vulnerable (Quirk and 
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Fernandez 2005).  Criticality may be a component of vulnerability, but it is not 

synonymous.      

2.4.2. Attributes Affecting Critical Infrastructure Vulnerability 

One important aspect of modeling critical infrastructure is determining the 

substation service area.  If a substation only serves a small population, the substation is 

not as vulnerable as a node that serves a large area (Bush et al. 2003). The magnitude 

aspect of vulnerability analysis directly ties into the population served or affected in the 

case of a disturbance (Schintler et al. 2007).  If the substation serves a large population, 

then the service area’s importance may be much greater than a substation that does not 

serve a large population.  Additionally, the population served may fluctuate during the 

day and during the night, which may make certain substations more vulnerable during 

the day and others more vulnerable during the evening.  In addition to population, the 

businesses affected may also be an important influence on the vulnerability of a 

substation (Schintler et al. 2007).    

Koger (2008) also identifies several factors that can shape the vulnerability to 

critical infrastructure.   These factors are broken categorized by: societal, system-

related, technological, natural, and institutional.  Societal factors include attractiveness 

for attack, public risk awareness, and demographics.  System-related factors include the 

complexity and interconnectedness of the network.  Technological factors include 

failure friendliness and infrastructure related operating principles.  Natural factors 

include availability of resources and natural hazards.  Finally, institutional factors include 

historic structures, legislation, and market organization (Koger 2008) (Table 2.3).   
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2.4.2.1. Climate and Energy Infrastructure 

Research investigating the impacts of natural disasters and climate change to 

critical infrastructure, such as energy grid, is sparse.  This is in part due to resolution 

differences between climate data and infrastructure data.  In the past, most climate 

data and climate impact studies are conducted at a coarse spatial resolution not 

appropriate for combination with fine scale critical infrastructure data.  Recent climate 

data, however, has been becoming available at finer spatial resolutions, making them 

easier to integrate with power grid modeling.  While the recent advancements in 

climate data is extremely favorable for the electrical grid modeling community, little 

guidance for incorporating this new climate data has been established (Bhaduri 2013).  

 

              Table 2.3: Factors influencing vulnerability  

              (after Koger 2008). 

Category Factors 

Technological 
Failure Friendliness 

Operational Principles 

Natural 
Resources Available 

Natural Hazards 

Societal 

Attractiveness for 

Attack 

Public Risk Awareness 

Demography 

System Related Topology 

Institutional 

Market Organization 

Government Policy 

Historical 
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2.4.2.2. Determining Service Areas for Electrical Infrastructure 

 Very little research has been conducted in estimating electrical substation 

service areas in the GIS.  The fundamental research problem is based on work in 

location-allocation literature (i.e. the location problem of assigning customers to service 

locations).  Allocation models are widely available, such as the Network Analyst module 

with the ESRI ArcMap GIS.  Network Analyst in the ESRI suite does compute service 

areas; however, the major usage of this tool is for determining the service area of 

businesses based strictly on cost (e.g. Euclidean distance or weighted distance).  The 

constraints for the service areas for businesses are tied to distance and time (drive 

time), while the constraints for electrical grid service areas are very different. 

 Research in service area definition for electrical infrastructure has utilized 

Voronoi and cellular automata (CA) approaches.  The CA approach is an iterative 

approach, where substation cells gain service area by claiming neighboring cells.  The 

area continues to expand iteratively until the area meets a neighboring substation 

service area, or other constraints, such as a substation’s total capacity, have been 

reached (Fenwick and Dowell 1999).  Fenwick and Dowell (1999) discuss methods of 

accuracy assessment for the CA model of determining substation service areas; 

however, they provide no accuracy assessment of their work.  LANL has developed the 

Constrained Cellular Colonization (C
3
) method, which can also be utilized for 

determining service areas and outage areas for electrical transmission grids (Bush et al. 

2003).  Oak Ridge National Laboratory (ORNL) developed a similar, but more robust, 

modified CA approach to determining service areas, which includes using population 
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data from LandScan in addition to the load and location information of the substations. 

This approach uses the Moore neighborhood (square-shaped neighborhood) versus the 

von Neumann neighborhood (diamond-shaped).  Neighbors are captured iteratively 

based on the supply sources within the specified radius, and the algorithm continues to 

capture cells until all non-zero cells are accounted for (Omitaomu et al. 2008).  These 

methods have only been tested in the United States and have yet to be tested in less 

developed countries.  Additionally, CA can be easily integrated into GIS, as GIS shapefiles 

can be exported from the service areas generated by the CA model (Bush et al. 2003).       

 The Voronoi diagram has also been used in research to approximate electrical 

service areas (Okabe et al. 2008, Akabane et al. 2002, Netwon and Schirmer 1997).  

Voronoi diagrams, also known as Thiessen Polygons, divide area into regions based on a 

set of points.  In Voronoi diagrams, the polygons are constructed such that every 

location within the polygon is closer to the point it contains than any other point.  

Akabane et al. (2002) utilized the Voronoi diagram to approximate service areas when 

determining optimal locations of power quality control centers.   

2.5. Summary 

This dissertation research needed to draw literature from a variety of different 

disciplines; it needed to draw from literature in GIS, Graph Theory and Mathematics, 

and Vulnerability to develop the most informed research possible.  In many cases, the 

literatures from these individual disciplines use different definitions of the same terms.  

Despite these discrepancies, the literature between the disciplines is often 

complementary and easily integrated.
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CHAPTER III 

METHODS 

 The methods chapter is broken up into several sections.  The first section 

discusses the study area for this dissertation research, and the justification of its choice.  

The next section describes the data utilized for this dissertation’s modeling framework.  

The third section discusses the data preparation and overall modeling framework.  The 

final section discusses how the framework was evaluated. 

3.1. Study Area 

The study area for this research consisted of Southeastern Asia (India, Bhutan, and 

Nepal).  This region was particularly interesting with regards to its electrical grid 

connections (discussed in section 3.1.1), especially because of the political instability 

that may ensue as a direct result of a loss of electrical power.  Certain areas, such as 

Bhutan, Nepal, and parts of India have had little western influence and have large 

cultural differences from other parts of the world, which may have an impact on how 

the factors are weighted in this area versus another area. This modeling framework is 

meant to be applicable worldwide. Thus, a research area in Southeast Asia and a smaller 

study area in the western world (discussed more fully 3.4.4) demonstrated the design’s 

versatility.  The same factors may be used and weighted differently, or different factors 

can be added to further highlight the uniqueness of an area.    
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Much of the previous research conducted on the vulnerabilities of energy 

infrastructure focused on developed countries.  This was not only true of energy 

infrastructure vulnerability studies, but studies involving vulnerabilities, hazards, and 

disasters in general.  The previous research focus on developed countries is likely due to 

data availability and the lack of energy infrastructure data for developing countries 

(National Research Council, 2006).  Review of available literature that used real-world 

data showed that the majority of research regarding critical infrastructure vulnerability 

and criticality has taken place in the developed world, especially North America and 

Europe.  Africa, Asia, and South America have been under-represented in critical 

infrastructure vulnerability and criticality literature.  With the lack of research in these 

particular regions, it was of key interest to use one of these areas as a test bed for this 

dissertation research.       

 Considering the lack of research in Asia and media interest in India’s energy 

infrastructure sector, it was of interest to study Southeastern Asian electrical grid 

vulnerabilities.  Southeast Asia is also extremely susceptible to environmental changes. 

These environmental changes are important for identifying areas in which the energy 

infrastructure will be impacted by impacts of climate change (Warner et al. 2009, Parry 

et al. 2007).  With the region’s susceptibility to climate change, the lack of literature on 

energy infrastructure in Asia, and unique impacts of critical infrastructure on the 

society, Southeast Asia was an ideal location to conduct this research.  The dissertation 

Southeast Asia study area was defined as: Nepal, Bhutan, and India (Figure 3.1).   
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                 Figure 3.1: Dissertation study area of India, Bhutan, 

      and Nepal. 

 

 

3.1.1. Study Area Energy Grids       

 The study area only includes India, Bhutan, and Nepal, because these countries 

have the energy grid interconnections in the region.  Currently, Nepal both imports and 

exports power to and from India.  Bhutan, on the other hand, is a chief exporter of 

power to India.  None of the other countries in the region, including Bangladesh and 

Pakistan, have currently exploited the potentialities of exporting or importing power 

regionally.  However, in some cases, such as Bangladesh, there are discussions of 

regional power trade with a Bangladeshi-Indian interconnection (Mahmud 2012).  

Pakistan also has no interconnections with India.  Discussions were raised between India 
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and Pakistan about connecting their power grids; however, the price that Pakistan was 

offering to charge India in exchange for its surplus power was and is the major 

impediment to connecting these two country’s power grids (USAID, 2009).    

3.1.1.1. Indian Energy Grid 

 The Indian Energy Grid is extremely complex.  Each individual Indian state has 

their own electricity board, which maintains most of the substations and transmission 

lines within a state.  There are five regional grids in India: the Northern, Western, 

Eastern, North-Eastern, and Southern regions (Figure 3.2).  The Northern Region covers 

the largest spatial area, and it is comprised of the states of Rajasthan, Uttar Pradesh, 

Uttaranchal, Himachal Pradesh, Punjab, and Jammu and Kashmir.  The installed 

generating capacity of the Northern Region is approximately 56,000 Megawatt (MW), 

with one MW serving approximately 1,000 homes, utilizing both thermal and 

hydroelectric generation.  The Western Region is comprised of the states of Gujarat, 

Madhya Pradesh, Goa, Chhattisgarh, and Maharashtra, with an installed generating 

capacity of approximately 67,000 MW. Energy generation in the Western Region is 

dominated by thermal generation, with smaller parts hydroelectric, renewable, and 

nuclear generation.  The Eastern Region is comprised of the states of Bihar, Sikkim, West 

Bengal, Jharkhand, and Orissa.  The Eastern Grid has an installed generating capacity of 

approximately 27,000 MW, with thermal, hydroelectric, and renewable generation 

sources.  The North-Eastern Region consists of Arunachal Pradesh, Assam, Nagaland, 

Manipur, Meghalaya, Tripura, and Mizoram.  The North- Eastern Region has an installed 

generating capacity of approximately 2,500 MW, coming from thermal, hydroelectric, 
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and renewable energy sources (Ministry of Power 2012).  The Southern Region includes 

the states of Andhra Pradesh, Karnataka, Kerala, and Tamil Nadu, with an installed 

generating capacity of approximately 41,000 MW.  Energy generation comes from a 

variety of sources including thermal, nuclear, hydroelectric, and renewable sources 

(Southern Regional Load Dispatch Center (SRLDC) n.d.).  These five regions are 

interconnected through a limited number of transmission lines of varying voltages 

ranging from 220 kV to 765 kV.  These interconnections help to distribute the generated 

energy from one region to another (Ministry of Power 2012).           
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                Figure 3.2: Energy Regions of India 

 

3.1.1.2. Bhutan Energy Grid 

 Bhutan’s energy grid is not nearly as extensive or complicated as the Indian grid.  

The minimalistic Bhutanese grid is understandable considering that India is almost 70 

times larger than Bhutan in terms of area, and over 1500 times (1,205,073,612 people in 
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India versus 716,896 people in Bhutan) greater in terms of population (Central 

Intelligence Agency 2012).  Despite these vast differences in area and population, 

Bhutan is the only country in South Asia with surplus power production that contributes 

to its economy (Asia Development Bank (ADB) 2010). The export-import relationship 

between Bhutan and India began as early as 1988 with the commissioning of the 

Chhukha Hydropower Plant.  The Chhukha power plant included not only a domestic 

network, but also connections to the Indian grid.  After the commissioning of this power 

plant, the Department of Power (DOP) was split up into a variety of different entities 

including the Bhutan Power Corporation (BPC), Department of Energy (DOE), and the 

Bhutan Electricity Authority (BEA) (ADB 2010).                  

Most of Bhutan’s power generation comes from a mix of hydropower and diesel 

generators. With Bhutan’s steep slopes and abundant water resources, it is not difficult 

to understand that of the two, the majority of the country’s power generation is from 

hydropower.  Between 2004 and 2009, several hydropower plant projects were 

completed and commissioning increasing the installed capacity of Bhutan from 438 MW 

in 2004 to 1,498 MW in 2009 (ADB 2010).  Currently, the only country that Bhutan 

exports its excess generation to is India (Kuensel 2012).              

3.1.1.3. Nepal Energy Grid 

 Similar to Bhutan, Nepal is a landlocked country situated to the north of India.  

Also similar to Bhutan, Nepal has vast hydropower resources, with hydropower 

accounting for 88 percent of the installed generation capacity of the country, with the 

rest of the installed capacity coming from multi fuels and diesel plants (South Asia 
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Regional Initiative for Energy (SARI/E) 2012).  Nepal and India also share energy through 

a bilateral trade treaty signed in 1996, though Nepal is a net importer of energy (Sarkar 

2012; SARI/E 2012).     

3.2. Data and Sources 

 This dissertation research required a great deal of data mining, preparation, and 

generation, especially when the study area was comprised of less developed countries 

(LDCs).  The availability and quality of electrical infrastructure geospatial data in these 

regions is often sparse. The quality of the data is typically undocumented or not 

assessed.  The paucity of good quality data has often precluded analyses of the electrical 

infrastructure; however, given abundant levels of time resources and current 

technology, the creation of these datasets was feasible. 

3.2.1. Geospatial Data Model Design  

 This dissertation modeling framework had a variety of important geospatial 

components to take into consideration.  First is the study area, which was defined as 

Southeast Asia.  Secondly, the unit of analysis was determined to be the service area 

level.  The unit of analysis is one of the most important components of this model, as it 

will determine a unit’s vulnerability.  If the unit of analysis was set to the state, very 

different vulnerability rankings would be produced.  Service areas were chosen, as they 

are the most important unit when describing, geospatially, the area of importance, or 

influence, of a substation.  For determining service areas, the most important attributes 

were the substation location and its capacity, as the service areas were delineated 
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based on their geographic location.  Service area delineation is discussed more fully 

later in Chapter 3.   

The next most important part of this dissertation framework is the factors.  One 

of the objectives of this dissertation research was to determine if graph metrics were 

more effective than geospatial attributes.  With this in mind, the topology of the study 

area electrical infrastructure needed to be generated to obtain topological information.  

The location of the substations and power plants was very important in determining the 

topological characteristics of the grid.  While the location of the transmission lines is 

also important, it is not as important as the location of the substation, because for many 

of the metrics the distance is calculated by Euclidean distance.  Other factors, such as 

population and natural hazards, were important for assessing the importance of 

geographic variables to substations vulnerability. 

One of the objectives of this dissertation research was to determine what 

characteristics, or attributes, was most likely to affect the vulnerability of a particular 

node.  The following table and sections detail, based on an extensive literature review, 

the necessary data to determine the vulnerability of a node, and the sources that were 

used in this research (Table 3.1).   
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      Table 3.1: Summary of the datasets utilized for analysis of Indian Energy Grids. 

Data Source Format 

Electrical Grid Network (Power 

stations, Substations, 

Transmission Lines, Capacities) 

Generated by Researcher using 

Indian Maps and Google 

Maps™ 

Vector 

Population Oak Ridge National Lab – 2010 

LandScan Global 

Raster 

Service Area ArcGIS Thiessen Polygons/Oak 

Ridge National Lab (algorithm 

generated)/PoDiuM 

Vector 

Natural Hazard Physical Risk United Nations Environmental 

Programme 

Raster 

Climate Extremes WorldClim (Hijmans et al. 2005) Raster 

Additional Critical 

Infrastructure 

Google Maps ™, Wikipedia™  Vector 

Land Cover Oak Ridge National Lab Raster 

 

3.2.2. Electrical Grid Networks 

 An electrical grid network structure and its associated attributes are often 

considered proprietary, and thus, are often not publically available.  Datasets for 

developed countries, such as North America and Europe, have been analyzed fairly 

widely; however, as stated in previous sections, Asia has largely not been analyzed, 

partially due to data availability issues.  Oak Ridge National Laboratory (ORNL), in 

conjunction with the National Geospatial-Intelligence Agency (NGA), is currently 

developing a Global Transmission Grid, utilizing only open source (e.g. available to the 

public) avenues of data collection to produce an open source international electric grid 

available to researchers. 

 Considerable time commitments were required for the development of a dataset 

of this magnitude.  Bhutan and Nepal have relatively small transmission networks; 

however, India has a very large and elaborate network.  In addition to developing the 
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structure of the grid, it was also necessary to determine the attributes associated with 

each component.  For substation and power plants the necessary attribute was capacity 

in megawatts (MW), and for transmission lines the necessary attribute was voltage in 

kilovolts.         

 The first step in creating the energy network layer was to find an existing map of 

the structure of the network.  In some cases these were posted on the Internet (Figure 

3.3).  These maps were georegistered and digitized for incorporation into a GIS-based 

data model.   

 

 

Figure 3.3: Example of map for digitizing (Source: Central Electric Authority (CEA) 2012). 

 

Rarely were the digitized features accurate portrayals of the location of the 

elements in geographic space.  These elements needed to be quality checked to ensure 
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that they were in the accurate position.  Often, high resolution imagery is used to 

ensure the accuracy of substation, power plant, and transmission line locations.  

Unfortunately, high resolution imagery is usually not available for this part of the world 

free of cost.  Google Maps™ and Wikimapia™ were often adequate alternatives to 

purchasing high resolution imagery.  Additionally, Google Maps™ and Wikimapia™ 

sometimes had descriptions that were useful (or at times misleading) in locating 

substations and power plants.  These sources; however, had a limited usefulness for 

insuring the quality of transmission line locations. 

Additionally, locating substations in developing countries was its own challenge.  

Generally, substations can be found on the outskirts of a city, and typically, at least in 

the developed world, are underlain with concrete or gravel (Hayes 2005).  These 

substations characteristics should make them relatively easy to locate on imagery given 

the city names where they are located.  In Southeast Asia determining substation 

locations were not easy.  Sometimes the substations were underlain with gravel or 

concrete; however, many times the substations were not.  The substations were 

positioned above a bed of grass or other natural environs, which made the substations 

especially difficult to locate (Figure 3.4).   

The original geo-referenced maps often provided names of the substations that 

identified the closest city to the substation (Figure 3.4).  However, when there was no 

name, or the name was ambiguous, such as “Southwest Station,” it was often difficult or 

impossible to locate these stations without local knowledge.  In cases such as this, the 

station was kept in the dataset to maintain the continuity of the grid, but it was noted in 
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the attributes that the location was not ascertained and it was also noted in the overall 

accuracy of the dataset.  No quality index was generated; however, the deficiencies in 

the data were noted for additional users.  Additional problems included poor quality of 

imagery on Google Maps.  In the case of poor image quality, the location of the 

substation’s city was found and the substation was placed on the outskirts of the city 

(Hayes 2005).   

 

 

             Figure 3.4: Challenges locating substations in less developed  

             countries. 

 



www.manaraa.com

52 

 

The attributes (such as capacity for substations and power plants and voltage for 

transmission lines) were ascertained from conducting a “web-crawl,” where each 

substation and power plant was searched using search engines such as Google to 

determine its capacity.  Only websites and documents from state, regional, and central 

government authorities were used to determine the approximate capacity of each 

substation and power plant.  If possible, the capacities of the substations were verified 

on multiple websites to ensure accuracy; however, in most cases verifying capacity on 

multiple documents was not possible.  If the capacity information for substations could 

not be obtained, it was estimated based on the attributes of similar substations in the 

area and noted in the attributes as estimation.     

3.2.2.1. Description of Generated Grids 

 The grids for the three countries (India, Bhutan, and Nepal) of interest had 

varying levels of accuracy.  Both Nepal and Bhutan had relatively small grids in 

comparison to the Indian Grid.  Transmission lines in all cases indicated the Euclidean 

distance between connected nodes, because it was extremely difficult to locate the 

transmission lines using open source options, such as Google Maps. While the distance 

is important, the spatial location of the substations was more important.  Also, it was 

impractical to accurately identify transmission line locations from open source imagery. 

  Power Generating Plants (PGPs) were located using a combination of the Global 

Energy Observatory and Google Maps ™.  For all three countries, each PGP was 

geographically located and its generating capacity documented (Table 3.2). 
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Table 3.2: Located Power Plants. 

Country Power Plants Located Power Plants Not Located 

India 189 (100%) 0 (0.0%)* 

Bhutan 4 (100%) 0 (0.0%)* 

Nepal 25 (100%) 0 (0.0%)* 

 *All KNOWN PGPs, not necessarily all. 

 Substations were the most difficult to locate, as stated in earlier sections.  India 

contained over 900 substations; Bhutan contained less than a dozen substations; and 

Nepal contained fewer than thirty substations.  Substations for all three countries were 

identified at or above the 132 kV level.  Locational accuracy was broken down by 

whether the substation was located, if only the city was located, or if no locational 

aspect of the substation was found (Table 3.3).  As stated previously, the locational 

information of the substations is most important attribute of the electrical network.  

The capacity of the substations was separated by actual and estimated in Table 3.4.  In 

the cases where the actual capacity of a substation could not be found, the capacity was 

estimated based on substations with known capacities of similar size, location, 

transmission line connectivity. 

 

Table 3.3: Located Substations. 

Country 
Substation 

Located 

Only City of 

Substation 

Located 

Substation Not 

Located 

India 856 (94%) 10 (1%) 41 (5%) 

Bhutan 11 (100%)* 0 (0%) 0 (0%)* 

Nepal 28 (97%) 0 (0%) 1 (3%) 

 *All KNOWN substations, not necessarily all. 
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               Table 3.4: Capacity Data. 

Country Actual Capacity Estimated Capacity 

India 826 (91%) 81 (9%) 

Bhutan 11 (100%) 0 (0%) 

Nepal 27 (93%) 2 (7%) 

 

 Due to the lack of comparable data sources for this type of location and attribute 

data from these countries, there was no way of formally assessing the accuracy of 

attributes and location data. This description was a qualitative description of the general 

accuracy of the developed datasets. 

3.2.3. Population 

 Population data was imperative to understanding the vulnerabilities and 

criticalities of any network.  Critical infrastructure serves and benefits the people.  

Where there are more people, there are more people to be affected by the loss of a 

critical component, and thus poses greater vulnerability. Due to these facts, population 

distribution is very important, and ORNL boasts the world’s finest spatial resolution 

dataset for global population.  This dataset, called LandScan Global™, represents the 

2010 ambient population (population averaged over 24 hours) per pixel and has a 

spatial resolution of 1 kilometer (km).  It is distributed in an ESRI Grid format for easy 

utilization in GIS software, but it is also available in ASCII format for users of non-GIS 

compatible software (Bhaduri, n.d.).     

3.2.4. Service Areas 

 Service areas were calculated using three methods.  These methods included a 

Service Area/Outage Area (SA/OA) Calculation algorithm developed by ORNL, the 
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Voronoi method, and the Power Distribution Model (PoDiuM) developed for this 

research.  The SA/OA algorithm requires three datasets: the supply (in MW), the 

geographic location of the substations, and the demand (population).  The Voronoi 

method only requires the geographic location of the substations.  PoDiuM requires the 

same data inputs as SA/OA (supply, geographic location, and demand), but in different 

forms described below. 

The SA/OA algorithm uses a cellular automata (CA) approach in conjunction with 

substation location, capacity, and population counts.   The algorithm required three 

inputs from Microsoft Excel™: a demand sheet, a supply sheet, and a combined 

worksheet.  The demand and supply sheet mimicked a raster dataset, with the cells in 

the rows and columns representing pixels in a Cartesian surface.  The supply sheet 

represented the locations and capacities (in MW) of the substations.  The demand sheet 

represented the approximated demand (D) per cell.  This was approximated using total 

supply (S), in Megawatts (MW), and population (P) (Equation 3.1).    

 

- = 	 .∑. ∗ 1 

 

The demand (in MW) for a cell was calculated by taking the proportion of regional 

population in the cell multiplied by the total energy supply for the region.  The algorithm 

then assigned each cell to a service area for each substation by spiraling clockwise to the 

cells around it, continuing until the supply was exhausted by the service area demand 

(Omitaomu et al. 2009).  The assumption with this allocation method was that the 

Equation 3.1 
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nearest locations (near in geographic distance) were strictly served by the nearest 

supply source.  For the Southeast Asian study area, the results at times did not generate 

contiguous service areas.  This was in part due to the algorithm being developed with 

United States engineering principles in mind, and may not translate well to another 

country, especially less developed countries.  An additional disadvantage was that the 

SA/OA algorithm could only process small areas of the study area at a time.  In many 

cases, entire states would have to be broken up, leading to discontinuous service areas 

that did not realistically resemble service areas that do not serve the entire population 

(Figure 3.5).    

 

 

          Figure 3.5: Data limitations of ORNL’s Service Area/Outage Area (SA/OA)    

          algorithm compared to the Voronoi Method. 
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The Voronoi diagram resulted in more contiguous service areas for the area of 

interest.  The Voronoi diagram divided the area into zones based on substation location.  

The partitions were drawn such that the zones were “…full areas where any location 

within the zone is closer to its associated input point than any other input point” (ESRI 

2012). The Voronoi method closely resembled those complete service areas produced 

by the SA/OA algorithm (Figure 3.5).  There were several advantages to using the 

Voronoi diagram to the SA/OA algorithm.  Firstly, the Voronoi diagram was easily 

implemented in a GIS environment. The SA/OA algorithm was processed outside of a 

GIS and must be imported after converting the output to an ASCII file.  Additionally, the 

Voronoi method produced service areas for the entire study area, without needing to 

divide the study area, and provided results much more expeditiously.  The largest 

benefit of this method was that there is no requirement for attribute information for 

the substations, such as capacity.  This would increase the versatility of the model and 

allow it to be more widely implemented.   

One of the limitations of the Voronoi method, however, was that it allocates the 

entire geographic area to a service area without taking into account areas that may not 

be served.  Especially in Southeast Asia, not every area is served by a substation.  There 

are areas and populations that are not served by the electrical grid, and the Voronoi 

method had no way of taking this fact into account.  A new approach, developed by this 

dissertation research, called PoDiuM, was a cost distance based algorithm that applied 

distance in cost units versus geographical units.  At a basic level, PoDiuM creates service 

areas by allocating cells of highest demand to nearby substations until the capacity of 
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those substations are completely accounted for.  This algorithm searches for cells of 

highest demand to allocate to substations in the form of service area.  This approach 

took a similar approach to the SA/OA algorithm, but transformed it into a cost approach, 

where the lower the demand, the higher the cost, and the greater the transmission 

distance, the larger the cost.  In this way, service area cost was the inverse of demand 

(Equation 3.2).  

 

-�2! =	
1

.
∑. ∗ 1

 

 

 For example, consider a given study region with a total population of 1000 

people, and a total substation capacity of 100 MW.  If the cell of interest has a 

population of 1, the Demand (denominator of Equation 3.2) would equal 0.1.  Thus -�2! 

would equal 10.  Similarly, if a cell of interest in the same study region had a population 

of 100, -�2! would equal 0.1.  This indicated that cells with less demand were more 

costly to include in the service area.  So, in a choice between the first cell of interest and 

the second, the algorithm would choose the second. Figure 3.6 describes the data flow 

for PoDiuM. 

The inputs required a raster population distribution surface (raster), substation 

location data (vector), and capacity information (tabular).  From the population, all 

areas with a population of 0 are excluded from the analysis, and the overall sum of the 

population in the area of interest is calculated and stored using summary statistics.  

Equation 3.2 
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Similarly, the overall capacity of the area of interest was calculated and stored using 

summary statistics.  These two values (population sum and capacity sum) were then 

used to calculate the demand, which was then inverted.  A raster dataset was created 

based on the inverse demand field, which was used as cost raster for the cost allocation. 

 

Figure 3.6: Data flow model for new service area algorithm. 

 

The cost allocation algorithm was the crux of calculating service areas for 

PoDiUM.  As stated earlier, cost can be equated to the inverse of demand.  The SA/OA 

allocates cells with the highest demand, but in a cost allocation approach, high values 

(high demand) are avoided.  By inverting demand, the highest demand values are of the 

lowest cost, and would be most attractive to the algorithm for allocation.  The cost 

allocation required two inputs: a source (substations) and a cost raster (inverse of the 
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demand).  The cost allocation basically identified which cells were allocated to an 

associated source based on the lowest accumulated cost to reach the source.  Though 

similar to Euclidean allocation, cost allocation does not use geographic units, it used 

cost units.  The cost raster defined the impedance to movement through the cell, 

derived from the cost and the direction of movement.  The cost per cell was calculated 

by taking the cost of the cell and multiplying it by the spatial resolution.  When 

discussing movement, moving linearly from one cell to another was calculated by taking 

the cost of one cell, adding it to the cost of its neighboring cell, and dividing by two.  If 

the movement was diagonal, the cost to travel is 1.414 times the cost of one cell added 

to the cost of its neighboring cell and divided by two.  The accumulated cost was the 

total cost to move from one cell to another (Figure 3.7).  In the case where the cost was 

over multiple cells, the costs were added to move between each pair of cells together to 

get the accumulated cost. 

 

 

     Figure 3.7: Calculating accumulative cost (after ESRI 2007). 
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The cost allocation algorithm was an iterative process (Figure 3.8).  In the first 

iteration, the neighbors of the source cell were analyzed and the cell with the lowest 

accumulative cost was allocated to the source.  Source cells were given a cost value of 0, 

as there was no cost for the source to return to itself.  In the next iteration, the 

neighbors of the allocated cell were included in the analysis, as they now have a path to 

the source.  Once again, the cell with the lowest accumulated cost was selected for 

allocation to the source.  Changing of allocated cells was possible if the algorithm found 

a new cheaper route.  The process continued until all of the cells were allocated, or an 

optional maximum distance threshold was met.  The maximum distance threshold was 

the accumulated cost that could not be exceeded. This allowed for the realistic notion 

that there were areas in a study area that were not served by any service area.   

             

 

  Figure 3.8: Cost allocation basic method (after ESRI 2007). 

 

There were advantages and disadvantages to all three algorithms.  The results of 

the newly developed PoDiuM approach were contiguous service areas that take into 

account population and capacity of the study area (Figure 3.9).  The SA/OA algorithm 
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was more computationally intensive, took more time to pre-process the data into the 

format ingestible into the algorithm, and took more transformations to ingest the 

outputs into a GIS.  The Voronoi method, while very computationally efficient 

(calculating service areas in less than one minute versus 9 minutes for the entire study 

area for PoDiuM), allocated the entire geographic area, which was less accurate for 

areas of interest.  Additionally, the Voronoi method was not appropriate for forecasting 

future changes in the grid.  PoDiuM required less data pre-processing and less 

computational resources than the SA/OA algorithm, but it was more detailed and 

realistic than the Voronoi method.  In terms of computational resources, PoDiuM was 

used to calculate service areas at the 1-km scale for the contiguous United States in 

approximately 20 minutes.  On the same system, ORNL’s SA/OA algorithm, implemented 

in MATLAB would take approximately one week.  PoDiuM balanced the weaknesses and 

strengths of both methods (SA/OA and Voronoi) to produce efficient, realistic service 

areas.  One additional benefit of PoDiuM was that the model can evolve to match the 

needs of grid modelers in the future.  For instance, present service area models do not 

take into account the demand that is not served, but PoDiuM does.  PoDiuM utilizes cost 

allocation, where the user can set a maximum, thus limiting how many cells are 

acquired by a given substation.  Future iterations of PoDiuM will take into account the 

evolution of the grid, including how and where to build new assets in response to 

unallocated demand or future changes in demand.   
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              Figure 3.9: Varying outputs of the three algorithms. 

 

Validating service area algorithms is difficult due to lack of reference data.  Past 

validation attempts have used natural disaster power outages to validate service areas. 

For example, if two substations are known to be not operational, and the number of 

people impacted is known, it can be used as validation for the approximated service 

areas.  LandScan Global can be used to find the number of people in the approximated 

service areas for the impacted substations, and these numbers can be compared with 

the number of known customer outages. 

 Calculating the service area was of the greatest importance to this research since 

service areas were used as the geographic unit of analysis.  Points could not be used as 

the unit of analysis, as the attributes that influenced the vulnerability of that substation 
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were not just located at the point, but allocated to the entire service area (Figure 3.10).  

Unfortunately, there was no way to validate the service areas, as these are proprietary 

boundaries that are not often shared by utility companies.  While electrical company 

areas of influence boundaries may be available, actual substation service areas are not. 

 

 

      Figure 3.10: Unit of analysis justification. 

 

 The capacities of the substations in the study region ranged 1 to 1120 MW.  

Figure 3.11 represents a histogram of the frequencies of the capacities in the study 

region.  The most frequent substation capacity was 70 MW which served a population of 

approximately 50,000 people. 
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Figure 3.11: Histogram of substation capacity frequencies. 

 

3.2.5. Climatic Extremes and Natural Hazards  

3.2.5.1. Natural Hazard Frequencies 

Natural Hazards and climatic extremes have an effect on both the physical 

condition of the critical infrastructure and its performance (Wilbanks et al. 2012).  

Natural disasters, such as earthquakes, landslides, and cyclones, are prevalent in the 

study area and can affect the physical condition of the power grid and thus its 

performance.  Many datasets are available including global risk data from UNEP and 

from Center for International Earth Sciences Information Network (CIESIN) at Columbia 

University.  The use of the Multi-hazard Risk from United Nations Environment 

Programme (UNEP) or Columbia University’s Global Multihazard Frequency Distribution 

may cause other factors, such as population and infrastructure, to be duplicated in this 

model.  Due to the duplication limitation, the multi-hazard datasets were not included 

in this research.    
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Both organizations have data disaggregated into individual hazard frequency, 

which were used to help identify the physical vulnerability of an area.  The advantage of 

using the disaggregated data was that it did not include population or other additional 

data enhancements.  The advantage of not having population was that it would not be 

included twice, as LandScan already accounted for population.  Also, the user can mix 

and match the individual hazard frequency data to best serve their interests.  This 

dissertation research focused on three of the major and most frequent hazards that 

affect this region: landslides, earthquakes, and cyclones.  Table 3.5 documents what 

datasets were chosen for inclusion.   

 

Table 3.5: Hazard datasets used in the analysis. 

Hazard Dataset Chosen Justification 

Earthquake UNEP • Higher Spatial 

Resolution (2 km) 

Landslides UNEP • Higher Spatial 

Resolution (1 km) 

• More information 

(CIESIN only 

presents landslides 

with a frequency 

greater than 6) 

Cyclones UNEP • Higher Resolution 

(2 km) 

 

3.2.5.2. Climatic Extremes 

 Climatic extremes also cause vulnerabilities in the power grid (Wilbanks et al. 

2012).  Generally, warmer than average temperatures and colder than average 

temperatures affect the demand for power and thus add additional stress on the power 
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grid (Wilbanks et al. 2012, McMorrow 2011).  Hijmans et al. (2005) developed a global 

gridded dataset of monthly average maximum temperatures between 1950 and 2000 at 

a 1-km resolution, which was used to describe the magnitude of temperature 

divergence from average on a given day.  One limitation of this dataset is that is lacks 

data from the latest 10 years.  The omission of these 10 years of data may impact the 

results of the analysis.  Raw maximum temperature for the two days of the Indian 

blackout were obtained from the National Climatic Data Center (NCDC) for the entire 

study area (approximately 90 weather stations) and converted into a raster surface for 

use in this model.    

3.2.6. Additional Critical Infrastructure 

 Critical infrastructure (CI) comes in a variety of different types ranging from 

roads to monuments to hospitals.  No data set was readily available for critical 

infrastructure in the study area.  As such, CI data was manually generated for the three 

countries in the area of interest.   Four major datasets were generated for each country: 

Major Airports, Major Hospitals, High Courts, Major Monuments, and Major Religious 

Places.  There were several reasons for the selection of these categories; however, these 

categories are not exhaustive of the possibilities for additional critical infrastructure 

datasets.  The major reason for the selection of these datasets was the data’s ability to 

approximate important features.  Hospitals were a proxy for the lifeline utilities critical 

infrastructure, whereas high courts were a proxy for the critical infrastructure known as 

continuity of government infrastructure.  While many of the lists of CI certainly were not 

exhaustive, it provided a base for analysis.  Additionally, due to time constraints and the 
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necessity of manually creating each dataset, the amount of data was limited to those 

datasets that had readily available site name lists.  Additionally, Bhutan is a very unique 

place, where government buildings (Dzongs) and religious facilities were many times 

one in the same.  The lists for each dataset were generated from the resources outlined 

in Table 3.6. Once the lists were generated for each dataset, they were geolocated using 

Google Maps™, and imported into ArcGIS™ using the geolocated latitude and longitude 

coordinates (Figure 3.12). 

 

Table 3.6: Sources of ancillary data. 

 India Bhutan Nepal 

High Courts India Mapped 

http://www.india

mapped.com/high

-courts-in-india/ 

Google Maps 

(Dzongs) 

Google Maps 

Hospitals Wikipedia 

http://en.wikipedi

a.org/wiki/List_of_

hospitals_in_India 

Google Maps Wikipedia 

http://en.wikipedia.o

rg/wiki/List_of_hospi

tals_in_Nepal 

Monuments India Mapped 

http://www.india

mapped.com/mon

uments-in-india/ 

Google Maps United Nations 

Educational Scientific 

and Cultural 

Organization Sites 

(UNESCO) 

Places of 

Worship 

India Mapped 

http://www.india

mapped.com/chur

ches-in-india/ 

Bhutan 2008 

http://www.bhut

an2008.bt/en/no

de/325; Google 

Maps 

Wikipedia 

http://en.wikipedia.o

rg/wiki/Category:Plac

es_of_worship_in_N

epal 

Public 

Airports 

VDS Technologies VDS Technologies 

(Paro, Bhutan 

airport not in 

dataset) 

VDS Technologies; 

Local Knowledge  
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Figure 3.12: Ancillary data sets collected for this research. 
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3.2.7. Land Cover  

 2007 global land cover data, obtained from ORNL, was used with a spatial 

resolution of 1 km.  Literature indicated that land cover can have an impact on the 

power needed for a particular location (Ministry of Power 2012).  For example, in India, 

irrigated crop land requires a great deal of power, as does the urban areas, while 

forested area does not require as much power.  Additionally the restoration of power to 

urban or irrigated cropland areas was of greater importance than to other land uses 

(Ministry of Power 2012).  This data contained 25 land cover classes including Urban, 

Dry Cropland, Irrigated Crop Land, Cropland (Grassland), Cropland (Woodland), 

Grassland, Shrubland, Savanna, Deciduous Broadleaf, Deciduous Needle leaf, Evergreen 

Broadleaf, Evergreen Needle leaf, Mixed Forest, Water, Herbaceous Wetland, Barren, 

Herbaceous Tundra, Mixed Tundra, Bare Tundra, Snow or Ice, Partly Developed, and 

Coast Land.   

3.3. Model Structure 

 Many considerations must be taken into account in the creation of a model.  

What type of data is appropriate to use?  If raster, what spatial resolution should be 

used?  What is the spatial unit of analysis?  The answers to the questions are not just 

reflected in the research question, but also in the data availability.  Multi-Criteria 

Decision Analysis (MCDA) specifically has important guidelines that researchers should 

follow.  For example, if the model uses raster data, the data should all be at the same 

spatial resolution (aggregated, converted, or resampled), and it must cover the same 

spatial area.  Additionally, before data can be utilized for MCDA, all data must be in the 
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same units.  If they are not in the same units, they should be reclassified into a 

comparable unit (such as low to high vulnerability) (Malczewski 2000).   

3.3.1. Data Preparation 

 A variety of different types of data were utilized in this research, requiring 

varying degrees of preparation.  This research used a variety of different data types: 

vector points, vector polylines, vector polygons, and raster data.  This model was a 

raster-based model, so all vector data were converted into raster data.  Additionally, the 

majority of the raster data that were being used for this analysis had a spatial resolution 

of 1 kilometer, so any raster data generated from vector data also had a spatial 

resolution of 1 kilometer.  If raster data had a finer or coarser spatial resolution than 1 

kilometer, the data were resampled to 1 kilometer.  These transformations were 

performed with the knowledge that resampling finer resolution data to a coarser 

resolution would result in data loss and resampling coarser resolution data to finer 

resolution data would result in no additional information gain. 

 The scale of analysis for this research was the service area level.  As stated 

earlier, the service areas were derived using the PoDiuM algorithm.  All factors were 

aggregated to the service area level.  The methods of preparing each individual dataset 

are describe in the following sections. 

3.3.1.1. Betweenness Metric Data 

 Figure 3.13 describes the work flow for the betweenness data preparation.  

Degree and closeness were also determined using the same workflow process.  The 

graph metrics were calculated using a modified version of the Urban Network Analysis 
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Toolbox for ArcGIS 10/10.1 out of the City Form Lab at Massachusetts Institute of 

Technology (Sevtsuk and Mekonnen 2012).  This toolbox, created especially for 

analyzing urban terrain, calculates various graph metrics including reach, gravity, 

closeness, straightness, and, of most interest in this research, betweenness.  The 

requirements to obtain the betweenness metric were a network dataset and ArcGIS’s 

Network Analyst extension.  The transmission grids for the three countries of interest 

were merged together, and a network dataset was generated.  With the resulting 

network dataset, the Urban Network Analysis Toolbox calculates betweenness for the 

entire research area.  Since the network data was processed as points, the points were 

then spatially joined to the Service Area file, and converted to a 1 km raster dataset, 

using the betweenness value as the raster value. The results were then classified into 

five classes, using natural breaks (Table 3.7).  These classes were reclassified into values 

of 1 to 5 (1 being least critical and 5 being most critical).  The reason this data was 

classified to was to make sure all of the factors were in the same units.  For this 

dissertation research, the units were vulnerability units: 1 through 5.  It also ensures 

that the data were in their natural classes, maximizing the differences between the 

classes.  Maximizing the differences ensured the most agreement and similarities 

between members of the same class.  Natural breaks were used to classify all of the 

factors utilized by this dissertation research.        

3.3.1.2. Population 

 Figure 3.14 describes the data preparation process for the population data.  

2010 LandScan Global™ was already a 1-km raster dataset, so it required no additional 
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resampling.  Zonal statistics were used to calculate the sum of the population present in 

the service area.  The sum was used versus the density because the greatest interest to 

this dissertation research was how many total people the service area served, not the 

density.  This raster was classified into five classes, using natural breaks to ensure like 

units between the factors (Table 3.8), and reclassified into values of 1 to 5 (1 being least 

vulnerable in terms of population (less people) and 5 being most vulnerable in terms of 

population (more people)) .  The service areas tended to vary in size based on its 

capacity. 

 

Figure 3.13: Data flow diagram for calculating the betweenness raster utilized in the 

analysis. 
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       Table 3.7: Reclassified betweenness values. 

Betweenness Range Reclassified Value 

0.0 – 10332.0 1 

10332.1 – 31252.0 2 

31252.1 – 63382.0 3 

63382.1 – 119462.0 4 

119462.1 – 235300.0 5 

 

 

 

Figure 3.14: Data flow diagram for calculating the population raster utilized in  

the analysis. 

 

          Table 3.8: Reclassified population values. 

Population Range Reclassified Value 

12,595 – 947,511 1 

947,512 – 1,919,826 2 

1,919,827 – 3,228,710 3 

3,228,711 – 5,397,718 4 

5,397,719 – 9,548,752 5 

 

3.3.1.3. Additional Critical Infrastructure 

 Figure 3.15 represents the data preparation for the additional CI data.  

Additional CI was in vector point format.  The individual CI shapefiles (Airports, 

Hospitals, Places of Worship, Monuments, and Courts) were merged into one shapefile, 

and then spatially joined to the Service Areas to obtain a count of how many CI locations 
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were within the service area.  The service areas were converted to a 1 km raster dataset 

based on the count.  The count was classified into 5 classes using natural breaks, to 

ensure like units among all of the factors in this dissertation research, then reclassified 

into values from 1 to 5 (1 being least vulnerable and 5 being most vulnerable in terms of 

the number of structures located within the service area) (Table 3.9).  A limitation of this 

approach is that it ignores in the individual criticality of each critical infrastructure type; 

however, this approach was taken because in this region many of these critical assets 

blend together (e.g. in Bhutan places of worship and courts are often the same). 

 

 

Figure 3.15 Data flow diagram for calculating the additional critical infrastructure  

raster utilized in the analysis. 
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                   Table 3.9: Critical infrastructure  

                   reclassified values. 

CI Range Reclassified Value 

0 – 1 1 

2 – 5 2 

6 – 12 3 

13 – 18 4 

> 18 5 

 

 

3.3.1.4. Land Cover  

 Figure 3.16 describes the data flow for preparing the 2007 land cover data.  Land 

cover was also a 1 km raster dataset, so the land cover data did not need to be 

resampled in any capacity.  The most vulnerable land covers (or land uses), as evidenced 

by the San Diego Blackout and the Indian Blackout, were urban areas and irrigated 

cropland that draw on electrical power.  Part of the reason for India’s 2012 back-out was 

irrigated crop land farmers were drawing more power than normal (Philpott and Jones 

2012).  Additionally, both blackouts had tremendous effects on major urban centers 

(San Diego and New Delhi, respectively).  As such, those land cover categories were 

weighted as more vulnerable and more important to the grid.  Additionally, there is an 

abundance of electrical power theft in India.  The majority of the theft is in irrigated 

crop land areas and urban centers, which would put more stress on the electrical grid in 

these areas (Golden and Min 2012).  The relative rankings used are summarized in Table 

3.10.  To obtain an overall ranking for the service area, zonal statistics were performed 

to obtain the zonal sum of the vulnerability rankings, which was then divided by the 
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total number of cells in the service area for the average vulnerability ranking of the cells 

in that service area.  The resulting rank was used for the service area as input into the 

WLC. 

 

 

         Figure 3.16: Data flow diagram for calculating the land cover raster utilized in the       

         analysis. 

 

          Table 3.10: Land cover reclassified values. 

Land Cover Class Reclassified Value 

All Others (Dry Cropland, Grassland, 

Shrubland, Savanna, Forests – all 

varieties, Water, Wetland, Barren, 

etc) 

1 

NA 2 

Partially Developed 3 

NA 4 

Urban, Irrigated Cropland 5 

 

3.3.1.5. Natural Hazards Risk 

 Figure 3.17 details the data preparation required for the natural disaster data.  

The data from UNEP came in a variety of different units, so to make sure the research 

was comparing like data forms, the data was transformed into similar units: average 

annual frequency.  Cyclone, for instance, were in average number per 100 years times 
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100, while landslides were an index of the probability of a landslide per year.  To 

transform the data into the same unit (frequency per year), simple map algebra 

functions were performed (Table 3.11). 

 

 

       Figure 3.17: Data flow diagram for calculating the natural hazards raster utilized in   

       the analysis. 

 

           Table 3.11: Algebraic functions for determining like values for natural   

           hazard datasets. 

Data Set Units Map Algebra Function 

Cyclone – Winds 
Average Number per 

100 years Times 100 
Value/10000 

Earthquakes Average Number per 

1000 years 

Value/1000 

Landslides 
Index of Annual 

Probability and Size 

Reclassify by Potential 

Landslides/Year 

 

 Even though the hazard frequencies were in comparable units, the data were 

still not in the same unit as the other criteria utilized in the analysis.  Each individual 
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hazard frequency per year was averaged at the service area level, then reclassified into 

individual raster datasets indicating the relative frequency of each hazard (1 indicating 

least frequent and 5 indicating most frequent).  Zonal means were used instead of sums, 

because a service area with a larger area would have been over represented as having a 

high frequency of events, when in reality the frequency was relatively low in comparison 

to other service areas.  Additionally, individual hazards were used instead of an 

aggregated sum of all hazard frequencies to provide additional flexibility in the model 

structure.  For example, there may be seasonal variances in occurrence that may 

exclude certain hazards from analysis at a given time (e.g. there is a season for cyclones, 

and when the model is run for times when cyclones are not prevalent, that particular 

dataset can be excluded from the analysis or weighted less).  Tables 3.11 through 3.13 

indicate the frequency ranges and their subsequent reclassified values for use in the 

final AHP analysis (Table 3.12, Table 3.13, and Table 3.14).    

 

               Table 3.12: Cyclone reclassified values. 

Cyclone Reclassified 

Value 

0 1 

0.0001 – 0.00033 2 

0.00034 – 0.00061 3 

0. 00062 – 0.0010 4 

0.0011 – 0.002 5 
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               Table 3.13: Landslide reclassified values. 

Landslides Reclassified 

Value 

0 1 

0.0001 – 0.00077 2 

0. 00078 – 0.0021 3 

0. 0022 – 0.0039 4 

0.0040 – 0.0085 5 

       

 

               Table 3.14: Earthquake reclassified values. 

Earthquakes Reclassified 

Value 

0 1 

0.0001 – 0.022479 2 

0.02248 - 0.03693 3 

0.03694 – 0.06529 4 

0.0653 – 0.13648 5 

 

3.3.1.6. Climate Extremes 

 Reports explaining recent blackouts have often cited climatic extremes as being 

part of the cause of the disturbance (Ministry of Power 2012).  Unfortunately, few 

attempts have been made to incorporate climate extremes with critical infrastructure 

models.  Those models that have incorporated temperature extremes have done so by 

estimating the increase in demand per temperature degree of increase; however, this 

has only been tested in the mid-latitudes of the United States, and may not be advisable 

for this study area (Young 2009).  However, this temperature increase model does 

indicate that with increased temperature, there is increased stress on the grid.  This 

dissertation research used a basic approach to including temperature extremes.  The 

approach to including climate extremes was to compare temperatures on any given day 
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to the temperature normal for that month.  The deviation from the average monthly 

temperature normal was then ranked from smallest deviation to largest deviation, thus 

showing increasing stress on the grid.   

   Figure 3.18 details the data preparation for temperature extremes.  Monthly 

average temperature maximums (1950-2000) were available from WorldClim with a 

spatial resolution of 1 km.  Since this dissertation research compared the model to the 

July 2012 Indian blackout, it was best to replicate those conditions.  As such, the 

temperature normal for July was used and resampled to a resolution of 1 km to match 

the rest of the raster data.   

 

 

Figure 3.18: Data flow diagram for calculating the climate extremes raster utilized  

in the analysis. 

 

 The National Climatic Data Center (NCDC) maintains a database of historical 

global temperature data.  This data is maintained in a tabular format for 70 stations in 

India.  The dates of the Indian blackout were July 30 and 31, 2012, so temperature data 

for those days were obtained for the available stations, and transposed into a format 
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readable in a GIS.  This data was imported as points, and a 1-km raster surface was 

generated using the Inverse Distance Weight (IDW) algorithm.   

 The individual IDWs were subtracted from the July temperature normal data to 

determine which areas were above or below average for that particular day.  The zonal 

maximum for each individual service area was then calculated to determine the 

maximum deviation from the normal temperature for a given service area on that day.  

The service areas were then converted into a 1-km raster dataset based on the 

maximum deviation from the normal temperature, and classified into five classes using 

natural breaks.  Natural breaks were utilized to remain consistent with the other factors, 

and to also convert the climate data into the same vulnerability units for comparison to 

the other factors in this dissertation analysis.  The data was then reclassified into values 

ranging between 1 and 5 (1 indicating the least deviation from normal (least critical to 

the grid) and 5 indicating the greatest deviation from normal (most critical to the grid)).  

Table 3.15 identifies the reclassified values for both days. 

 

                  Table 3.15: Climate extremes reclassified values. 

Temperate Extreme 

Range 

Reclassified Value 

-5.21048 – 0.000 1 

0.001 – 6.449 2 

6.450 – 14.496 3 

14.497 – 23.8568 4 

23.8569 – 36.336 5 
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3.3.2. Weighted Linear Combination (WLC) 

 The base of the model was an AHP approached combined with a WLC.  The AHP 

tool was packaged as an ArcGIS add-in for the ArcGIS  version 10, as all legacy AHP 

scripts for ArcGIS were not compatible with the ArcGIS version 10 and creating a new 

code to the specifications of this research was more time efficient than upgrading 

existing code to the current version of ArcGIS.  It is important to note that the 

implementation of AHP in this dissertation research did not use a hierarchical pairing of 

factors, but a flat implementation with pairwise comparisons.   

 The AHP tool, as stated, was an ArcGIS add-in developed in a VB.net framework 

that calculates weights based on AHP.  The reclassified raster datasets from the data 

preparation stage as input into the “Analytic Hierarchy Process Wizard” were selected.  

These raster datasets then populated the “Criteria” box (Figure 3.20).  The “Final 

Output” was where the output of the resulting WLC was stored.  After the criteria were 

input, a dialogue box was created that dynamically generated track bars for the 

appropriate number of pairwise comparisons given the number of factors provided.  

These track bars allowed the user to perform the pairwise comparisons of the various 

factors, without filling in the comparison matrix.  The sliders were used on the track bar 

to indicate the relative importance of one factor versus another.   

After the pairwise comparisons for all combinations of the factors were 

performed, a dialogue box was generated providing the resulting weights for each factor 

and processed the rasters by multiplying the cell values by the factor weights calculated 

by the AHP algorithm.  Figure 3.19 provides a small example of how the AHP tool works.  
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The minor differences in the resulting weights were due to rounding differences.  For 

this dissertation research, experts in the region performed the pairwise comparison. 

The primary purpose of the program was to calculate the weights; however, it 

had the added advantage of preforming the WLC.  Figure 3.20 identifies the processes 

that occurred after the weights were calculated.  After the weights were calculated, 

they were multiplied by their corresponding factor raster.  These weighted surfaces 

were then summed together to provide a final vulnerability surface.  After the final 

vulnerability surface was calculated, the raster was reclassified into five classes to 

indicate relative vulnerability classes: very low, low, medium, high, and very high 

vulnerabilities. 

 

   Figure 3.19: AHP tool graphical user interface and outputs. 
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 There were several advantages to producing an AHP tool for ArcGIS in this 

fashion.  First, the track bars made the AHP tool much easier to use than simply having 

the user fill in the pairwise comparison matrix.  The matrix can be difficult to 

understand, and the user might be unsure how to conduct the pairwise comparison.  

Providing track bars for the user made placing higher rankings on more important 

factors easier.  Additionally, ArcGIS add-ins are easier to transport from one user to 

another.  It is the first add-in of its kind for ArcGIS 10, as most other AHP tools are for 

legacy versions of ArcGIS that have either not been updated or have ArcGIS 10 versions 

in production.       

    

 

    Figure 3.20: Weighted Linear Combination process performed in the AHP tool. 
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3.4. Model Evaluation 

3.4.1. Accuracy Assessment/Validation 

 The model was performed using three different approaches, each building on 

the other.  The first approach was based solely on the graph metrics, where the results 

were classified into five vulnerability classes using natural breaks.  The graph metrics of 

degree, betweenness, and closeness were evaluated to determine the best performing 

graph metric.  The second approach only used graph metrics and non-climatic data 

(betweenness, population, land cover, and other critical infrastructure data), as opposed 

to the first that only used graph metrics.  The resulting vulnerability surfaces were also 

classified into five vulnerability classes using natural breaks.  Natural breaks were used 

to classify the data based on its ability to derive natural classes, which can be 

reclassified into levels of vulnerability.  This was also the same method used to classify 

the factors in this dissertation research.  The final approach included the best 

performing combinations of the variables utilized in the previous approaches 

(betweenness, population, land cover, and other critical infrastructure) and combined 

them with natural disaster frequency and climatic extremes.  As with the other two 

approaches, the vulnerability surface was classified into five vulnerability classes. 

These three approaches were first compared and validated based on reference 

data from India’s 2012 blackout by performing an accuracy assessment of the results.  

This accuracy assessment consisted of comparing the substation rankings for each of the 

variable combinations for the substations that were involved in the July 2012 Indian 

Blackout.  The accuracy assessment metric was defined as the number of substations 
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identified as having a high or very high vulnerability that were involved in the blackout 

compared to the total number of substations involved in the blackout (For example, if 

10 of 30 substations involved in the blackout were identified by a given model, the 

accuracy assessment metric would yield a value of 33.3%.)  Of particular interest were 

the following metrics and questions: 

1) What service areas were consistently ranked as vulnerable by all three 

scenarios?  What were the possible explanations? 

2) What service areas were not consistently ranked as vulnerable by all three 

approaches? 

3) Where did the differences lie in the most highly vulnerable substations?       

4) What did the resulting vulnerability rankings indicate about the addition of 

geographic data to graph metrics for analyzing substation and service area 

vulnerability? 

5) How would the policy recommendations from each approach differ, if any? 

 The results were given within the context of the 2012 Indian blackout.  Would 

any of these models be able to predict the vulnerability of the key substations in the 

2012 blackout? 

3.4.2. Statistical Analyses 

Two statistical analyses were performed to further determine the validity of the 

results.  The first statistical analysis that was performed was a principal component 

analysis.  One of the purposes of the second and third approaches was to determine 

which factors were most pertinent to node vulnerability and those factors that were 
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not.  A factor analysis helped to determine if there were redundancies in the data and 

where those redundancies were.  Additionally, factor analysis determined whether the 

best performing model had or did not have data redundancies. A second statistical 

analysis that was performed was an Analysis of Variance (ANOVA) test to assess the 

statistical differences between the best performing scenarios and determine if there 

were any statistically significant differences between the scenarios. 

3.4.3. Sensitivity Analyses 

 Sensitivity analyses on MCDM analyses typically represent variations in the 

weights, geography, or scale.  For this dissertation research, the three major sensitivity 

analyses were conducted: based on the combination of factors, based on the factor 

weights, and based on the spatial scope of analysis.   

The first sensitivity analysis was a sensitivity analysis based on the combination 

of factors.  For example, how did the combination of land use and betweenness 

compare to the combination of land use, betweenness, and population?  Did one of 

these combinations correctly identify vulnerable substations from the July 2012 black 

out versus the other?  Some combinations of factors out-performed others, and thus it 

was important to find the combinations of factors that best identified the vulnerable 

substations.   

A sensitivity analysis was also conducted on the factor weights.  In this sensitivity 

analysis, the weights of the factors in the pairwise combinations were varied to see the 

effect the combination’s performance.   
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 A sensitivity analysis was also conducted for the spatial scope of analysis.  This 

dissertation research was conducted initially for the entire study area (Bhutan, India, 

and Nepal).  The spatial scope sensitivity analysis took the analysis that was first 

conducted for the entire study area and conducted it only for the Northern Indian Grid 

(Figure 3.3).  The factors were reclassified using natural breaks based on the Northern 

Grid region only.  These results were compared to the outcome of the model when 

analyzed for the entire study area to see if there were sensitivities in the analysis results 

based on the scale of analysis.   
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CHAPTER IV 

RESULTS 

 

4.1. Introduction 

 The methods for determining substation vulnerability described in Chapter 3 

were evaluated utilizing the Indian electrical grid context, specifically the Indian 

blackout that occurred on July 30 and 31, 2012.  The framework was evaluated for its 

value in determining substation vulnerability and applicability to other research areas.  

Vulnerability, for the purposes of this research, is defined as “…physical feature or 

operational attribute that renders an entity open to exploitation or susceptible to a 

given hazard” (DHS 2008, pg. 34).  Essentially, this definition refers to a critical 

infrastructure network’s ability to maintain a given critical function.  In the case of this 

dissertation research, the critical function was maintaining power to the largest number 

of customers.  This dissertation method did not indicate risk, as consequence was not 

evaluated.  The results were used not only to understand the vulnerabilities of individual 

substations but to understand the system as a whole.         

4.2. Indian 2012 Blackout – Context  

 On July 30 and July 31, 2012, two major blackouts impacted the Indian electrical 

grid leaving 10% of the world’s population without power.  Both blackouts had major 

consequences for the northern grid of India, resulting from a series of 
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transmission line losses throughout the regional grids (Figure 3.3). A report of the 

Enquiry Committee on the Grid Disturbance cited weak inter-regional transmission 

corridors and lack of situational awareness as the major reasons for the blackouts 

(Ministry of Power 2012).   

 The July 30, 2012, event consisted of the loss of substations and transmission 

lines over the course of 20 different events, taking approximately 20 seconds, and 

affecting 29 substations throughout northern India. The first event was the loss of the 

Bina-Gwalior 400 kV Transmission line, which is the main connection between the 

western region and the northern region.  Figure 4.1 illustrates the sequence of events 

and lost assets during the July 30, 2012 event.   Figure 4.2 illustrates the lost 

substations.  Eighty of power was restored after 15 hours of work on July 30, 2012; 

however, another, larger event occurred the next day: July 31, 2012.  

 Sixteen substations were impacted on both days, with 13 impacted only on July 

30, 2012, and 29 impacted only on July 31, 2012.  The second day’s events also 

extended further south and north. The July 31
st

 event greatly impacted the New Delhi 

area, with five additional substations being impacted in that area (Figure 4.3).  The 

second event occurred over the course of 3 minutes and 5 seconds.  A little less than 

double the number of substations was affected on this second day, with a total of 45 

substations impacted over the course of 30 distinct outages (Figure 4.2).  The initiating 

event was the loss of Bina-Gwalior 400 kV Transmission line, which is the main 

connection between the western region and the northern region.   
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        Figure 4.1: July 30, 2012, sequence of events shown by the transmission line  

        that was lost and the order (by number). 
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         Figure 4.2: Substations impacted by the blackouts. 
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        Figure 4.3: Sequence of events for the July 31, 2012 blackout. 

 

 Could this blackout have been predicted and perhaps avoided with knowledge of 

the vulnerabilities existing in the grid?  The detailed report of the events of both days 

helped determine if this blackout could have been predicted with graph metrics alone, a 

more or detailed, place-based framework.  The two days were analyzed as two separate 

events.   

4.3. Graph Metric Results 

 Literature describing the use of betweenness to determine vulnerability in 

electrical grids have cited that betweenness is the most appropriate measurement, as it 

is the only measure that measures flow in the network (See Chapter 2 for a more 

detailed explanation of betweenness) (Rocco et al. 2011, Desmar et al. 2008).  To 

further demonstrate the importance of betweenness using real-world data, three 
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centrality metrics are tested: betweenness, degree, and closeness.  Table 4.1 details the 

usefulness of each graph metric in identifying substations involved in the 2012 Indian 

blackout as a high or very high vulnerability.  Numbers 1 through 5 indicated relative 

vulnerability, 1 indicating very low vulnerability and 5 indicating very high vulnerability.  

Closeness was not included in the table, because it did not identify any of the 

substations as having a high or very high vulnerability.  Betweenness and degree had 

similar results; however, betweenness identified more substations as having a high or 

very high vulnerability (27.6% versus 20.6% for degree for July 30
th

 substations).  There 

was between a 36% (for the July 31
st

 substations) and 57% (for the July 30
th

 substations) 

agreement between betweenness and degree, meaning 36% of the substations 

identified as having a high or very high vulnerability were identified by both the 

betweenness metric and the degree metric. 

 In this section and the sections to follow, a variety tables were generated to help 

visualize the vulnerability of the nodes involved in the Indian Blackout.  These charts are 

color coded based on the color scheme in Figure 4.4.  

 

 

Figure 4.4: Color Scheme used. 
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Table 4.1: Comparison of centrality metrics for determining spatial graph  

Vulnerabilities, based on betweenness. 

 

 

 

Substation Betweenness Degree Substation Betweenness Degree

Agra (PG) 2 3 Agra 5 5

Balia 1 3 Agra (PG) 2 3

Ballabarh 1 3 Allahabad 4 5

Bareilly 1 3 Balia 1 3

Bawana 2 3 Ballabarh (BBMB) 1 3

Bhinmal 3 3 Bhiwadi 5 5

Biharshariff 4 5 Biharshariff 4 5

Bina (PG) 3 3 Bina (PG) 3 3

Chittorgarh 1 3 Budhipadar 2 3

Gorakhpur (PG) 4 3 Dausa 3 3

Gwalior (PG) 5 3 Debari 1 1

Heerapura 4 5 Greater Noida 1 2

Jaipur (PG) 3 5 Gorakhpur (PG) 4 3

Jamshedpur 4 3 Gwalior (PG) 5 3

Kanpur (PG) 4 5 Jaipur (PG) 3 5

Kota 5 5 Jamshedpur 4 3

Malanpur 2 2 Jaypore 4 3

Meerut 3 5 Jodhpur 3 3

Muzaggarpur 3 3 Kaithal 2 4

Patna 1 3 Kaithal (400 kV) 1 3

PG Bisra 3 3 Kankroli 1 2

Rishikesh 1 3 Kanpur (PG) 4 5

Roorkee 2 3 Kishenpur 3 5

Rourkela 4 3 Koteshwar 1 3

Samaypur 2 5 Maler Kotla 2 3

Sanchore 1 2 Maharani Bagh 2 2

Sasaram 3 3 Maithon 2 3

Tehri 1 3 Mandaula 2 3

Udaipur 1 3 Meramandoli 4 3

%(Very)High 27.60% 20.60% Muzaffarpur 3 3

Panki 3 4

Patna 1 3

PG 2 5

PG Bisra 3 3

PG Kankroli 2 3

Raigarh 2 3

Ranchi 3 3

Rewari 3 2

Rourkela 4 3

Sabalgarh 1 1

Samaypur 2 5

Sasaram 3 3

Shivpuri 1 2

Suratgarh 1 3

Wagoora (PG) 1 3

Percent High/Very High 24.40% 24.40%

Vulnerability Rankings

July 30, 2012

Vulneraiblity Rankings

July 31, 2012
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In keeping with previous research for determining vulnerabilities in graph 

networks, betweenness was calculated for this research and compared to the events for 

the 2012 blackout (Rocco et al. 2011, Desmar et al. 2007).  The betweenness results for 

the entire study area are summarized in Table 4.2.  Ideally, with critical infrastructure, a 

country does not want a larger number of service areas (substations) to have a very high 

vulnerability.  For this blackout, there were only about 2% of the substations were 

considered to be very high vulnerability nodes.  The high and very high vulnerability 

rankings accounted for less than 10% of the substations in the study area.  Hines et al. 

(2010), however, caution that only assessing a network’s vulnerability based on graph 

metrics can be misleading.  Was betweenness able to identify the majority of the 

substation service areas that were affected by the 2012 Indian Blackout? 

 

          Table 4.2: Summary of Betweenness Metric Results. 

Vulnerability Ranking 

Number of 

Service Areas 

Identified 

Percent of Total 

Service Areas 

Very Low 652 68.8% 

Low 149 15.7% 

Medium 79 8.3% 

High 50 5.3% 

Very High 18 1.9% 

 

 

4.3.1. July 30
th

, 2012 

 Overall, betweenness was a poor indicator of substations vulnerable during the 

July 30
th

 event.  Overall, betweenness was only able to identify two out of 29 of the 
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impacted substations as high vulnerability substations, and only 8 (27.7%) of the 29 as 

high or very high vulnerability.  The majority of the impacted substations were 

considered medium, low, or very low vulnerability (76.1%) with regards to betweenness 

(Figure 4.5).  However, it is important to note that one of the initiating events of the 

blackout, the loss of the transmission line between Bina and Gwalior, would have been 

identified using the betweenness metric, as the Gwalior substation has a very high 

vulnerability ranking. 

 

 

 

Figure 4.5: Vulnerability rankings for substations affected by the July 30
th

, 2012 

blackout. 

 

4.3.2. July 31
st

, 2012 

 Similar to the events on July 30
th

, overall, the betweenness measure was a poor 

indicator of substations vulnerable during the July 31
st

 event.  Only three (6.5%) of the 
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nodes were ranked as having a very high vulnerability, and only 12 (26.1%) nodes were 

captured in the high and very high vulnerability rankings (Figure 4.6).  If policy were 

enacted solely on the basis of the betweenness measure, only 12 of the nodes affected 

on this day would have been protected.  However, it is important to note that one of the 

initiating events of the blackout, the loss of the transmission line between Bina and 

Gwalior, would have been identified using the betweenness metric, as the Gwalior 

substation has a very high ranking.   

 

 

 

Figure 4.6: Vulnerability rankings for substations affected by the July 31
st

, 2012 

blackout. 

 

 For both days of the blackout event, betweenness was not a sufficient metric for 

identifying vulnerable substations.  For each day, it accounted for less than half of the 

total affected substations.   
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4.4. Inclusion of Non-Climate Related Variable Results 

 The first approach indicated the ineffectiveness of only using betweenness to 

measure vulnerabilities of substations within the Indian grid.  While there are benefits 

of using betweenness, such as its ability to identify the vulnerabilities in the initiating 

substations, it missed around 80% of the other substations affected.  Will the inclusion 

of characteristics of the substations help identify additional vulnerabilities? 

4.4.1. Descriptions of the Datasets 

4.4.1.1. Land Use 

 The land use dataset, similar to the betweenness dataset, was ranked from 1 to 

5 indicating varying ranks of vulnerability.  The land use data included such categories as 

urban, water, and partly developed.  For a more robust definition of land use, please 

refer to Chapter 3. The results for the vulnerability rankings for land use are summarized 

in Table 4.3.  The percentage of total service areas in each category was fairly 

comparable to that of the betweenness metric, except there was approximately 3% 

more service areas found to have a very high vulnerability ranking; however, that 

increase was coupled with an approximate 5% increase in the percentage of service 

areas ranked as having a very low vulnerability ranking. 
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         Table 4.3: Summary of land use results. 

Vulnerability Ranking 

Number of 

Service Areas 

Identified 

Percent of Total 

Service Areas 

Very Low 701 73.9% 

Low 124 13.1% 

Medium 49 5.2% 

High 34 3.6% 

Very High 40 4.2% 

   

 In addition to the differences in the total number of service areas represented by 

each category, there were also differences in the geographic distribution of the 

vulnerability (Figure 4.7).  While over half (55.8%) of the substations had no change in 

their ranking, it was interesting to note where there were differences in the 

vulnerability ranking (44.2%).     

 

 

 

Figure 4.7: Geographic difference in vulnerability                                

distribution for betweenness versus land use. 
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4.4.1.2. Population 

 Population totals, as acquired from LandScan Global, were also ranked from 1 to 

5 indicating ranks of vulnerability with 1 being very low vulnerability and 5 being very 

high (see Chapter 3 for more information).  The results for the vulnerability rankings for 

population are summarized in Table 4.4.  The population rankings had a different spatial 

distribution, with the majority of the service areas with a ranking of very low through 

medium vulnerability (97.2%), and only 2.8% of the service areas with a ranking of high 

or very high vulnerability.  This could mean that the service areas were well divided 

amongst the served population, with few service areas serving large populations. 

       

         Table 4.4: Summary of population results. 

Vulnerability Ranking 

Number of 

Service Areas 

Identified 

Percent of Total 

Service Areas 

Very Low 565 59.6% 

Low 250 26.4% 

Medium 106 11.2% 

High 25 2.6% 

Very High 2 0.2% 

 

 The geographic distribution of the vulnerability rankings using population totals 

definitely revealed new information not contained in the betweenness metric or the 

land use vulnerability rankings (Figure 4.8).  Between population and land use rankings, 

56% of the service areas remained the same, and 44% changed.  When comparing the 

betweenness metric and the population rankings, 51% of the service areas experienced 
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a change in rankings.  This indicates disparities in what each variable identifies as being 

vulnerable.  

 

 

 
 

Figure 4.8: Geographic difference in vulnerability distribution for population versus the 

betweenness metric and land use. 
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4.4.1.3. Additional Critical Assets 

 The additional critical assets by service area dataset were ranked in the same 

fashion as the betweenness metric, land use, and population, with a service area 

containing few additional critical assets having a vulnerability ranking of 1.  The results 

for the vulnerability rankings for population are summarized in Table 4.5.  Similar to 

population, very few substations were ranked as high or very highly vulnerable (less 

than 1%) in terms of the occurrence of other critical assets beyond the electrical 

infrastructure.    

 

          Table 4.5: Summary of additional critical assets results. 

Vulnerability Ranking 

Number of 

Service Areas 

Identified 

Percent of Total 

Service Areas 

Very Low 843 89.0% 

Low 71 7.5% 

Medium 26 2.7% 

High 7 0.7% 

Very High 1 0.1% 

 

 The geographic distribution of the ranking of additional critical infrastructure 

asset vulnerability differed from the vulnerability distributions of the other three 

variables (Figure 4.9).  When compared to all three of the other variables, between 61 

and 71% of the service area rankings remained the same.   
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Figure 4.9: Geographic difference in vulnerability distribution for other critical 

infrastructure assets versus the betweenness metric, land use, and population. 
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4.4.1.4. Comparison of Factors for Blackout  

 The factors discussed all have different geographic distributions.  To understand 

how to combine them, it was important to understand how the variables interact with 

each other and how substations involved ranked on each factor.   

 To assess how the factors interact with each other, the Spearman correlation 

coefficient is calculated and analyzed (Table 4.6).  The correlations between any pair of 

variables were low to moderate; however, the highest correlations occurred between 

population and land use, and population and other critical assets. The moderate 

relationship between land use and population was explainable by the fact that land use 

and population are directly tied.  The more people in a particular area, the more likely it 

is to be an “urban” area.  Also, the moderate relationship between population and other 

critical assets can be explained by the fact that the more people in a given area, the 

larger the need for more critical assets, such as hospitals. 

 

              Table 4.6: Variable correlations using the Spearman method, 

             Values significant at the 0.05 level are marked in bold. 

 

 

Betweenness Land Use Population

Other 

Critical 

Assets

Betweenness 1 0.156 0.164 0.132

Land Use 0.156 1 0.369 0.339

Pouplation 0.164 0.369 1 0.422

Other Critical 

Assets 0.132 0.339 0.422 1
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For July 30
th

, betweenness alone could have identified 27.6% of the substations 

that were impacted as being vulnerable.  However, by including other landscape metrics 

four additional substations were identified as vulnerable and reiterated other station 

vulnerabilities (for example, Biharshariff having vulnerabilities both in betweenness and 

land use). Interestingly, other critical assets would not have added any additional 

information, providing no indication of vulnerabilities in any of these substations.  

Additional critical assets may be impacted as a consequence of the vulnerabilities in the 

electrical grid; however, additional critical assets themselves may not be important for 

identifying vulnerabilities.  Utilizing betweenness, population, and land use data, 41.4% 

of the substations affected on July 30
th

 were identified as vulnerable, which is a 13.8% 

increase over betweenness alone (Table 4.7).  While this percentage metric helped to 

explain omission errors, commission errors in this type of predictive model are difficult 

to assess.  Since validation data was based on one instance (in this case, the July 2012 

Indian blackout), it is difficult to assess if the attribution of a substations as vulnerable is 

an error of commission.  Just because the substation was not impacted by this particular 

event, does not mean that it is not vulnerable. 

The rankings for the substations for July 31
st

 reflect similar results to those of 

July 30
th

.  Once again, betweenness identified the most substations impacted on this 

day, with 24.4%, followed by land use (8.9%), and finally population (6.7%).  Other 

critical assets continued to provide little insights into the vulnerability of these particular 

substations.  Land use and population, however, did rank four substations as having a 

high or very high vulnerability that were not ranked by betweenness alone.   Combined, 
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all four variables rank 33.3% of the substations impacted on July 31
st

 as having high or 

very high vulnerability, which was 8.9% more than graph metrics alone (Table 4.8).    

 The major benefit of comparing the variables in this fashion was to see how 

important each variable is to the overall goal.  For example, the “other” critical assets 

variable did not greatly contribute to the identification of any vulnerable substations 

that could have been useful for preventing the 2012 Indian blackout.  Betweenness 

ranked around a quarter of the substations as having high or very high vulnerability; 

land use ranked about a tenth as  having high or very high vulnerability; and population 

ranked about six-hundredths (6%) as having high or very high vulnerability.  This may be 

useful information performing the pairwise comparisons in the AHP portion of the 

research.   
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Table 4.7: Vulnerability rankings by variable for substations affected by               

July 30, 2012 blackout. 

 

 

 

 

 

 

 

Substation Betweenness Land Use Population
Other Critical 

Assets

Number of Factors 

Account for High 

Vulnerability

Agra (PG) 2 1 1 1 0

Balia 1 3 3 1 0

Ballabarh 1 2 1 1 0

Bareilly 1 1 1 1 0

Bawana 2 1 1 1 0

Bhinmal 3 1 1 1 0

Biharshariff 4 4 4 1 2

Bina (PG) 3 1 2 1 0

Chittorgarh 1 1 1 1 0

Gorakhpur (PG) 4 1 1 1 1

Gwalior (PG) 5 1 3 2 1

Heerapura 4 1 1 1 1

Jaipur (PG) 3 1 1 1 0

Jamshedpur 4 1 1 1 1

Kanpur (PG) 4 2 1 1 1

Kota 5 1 2 1 1

Malanpur 2 5 1 1 1

Meerut 3 2 1 1 0

Muzaggarpur 3 2 4 1 1

Patna 1 5 1 1 1

PG Bisra 3 1 1 1 0

Rishikesh 1 1 2 1 0

Roorkee 2 1 2 1 0

Rourkela 4 1 2 1 1

Samaypur 2 1 1 1 0

Sanchore 1 1 1 1 0

Sasaram 3 4 2 1 1

Tehri 1 1 2 1 0

Udaipur 1 1 2 1 0

%(Very)High 27.60% 13.80% 6.90% 0.0.% 41.40%

Vulnerability Rankings
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Table 4.8: Vulnerability rankings by variable for substations affected by July 31,  

2012 blackout. 

 

Substation Betweenness Land Use Population
Other Critical 

Assets

Number of Factors 

Account for High 

Vulnerability

Agra 5 2 3 3 1

Agra (PG) 2 1 1 1 0

Allahabad 4 2 4 3 2

Balia 1 3 3 1 0

Ballabarh (BBMB) 1 2 1 1 0

Bhiwadi 5 1 1 1 1

Biharshariff 4 4 4 1 3

Bina (PG) 3 1 2 1 0

Budhipadar 2 1 3 1 0

Dausa 3 1 1 1 0

Debari 1 1 2 1 0

Greater Noida 1 3 3 2 0

Gorakhpur (PG) 4 1 1 1 1

Gwalior (PG) 5 1 3 2 1

Jaipur (PG) 3 1 1 1 0

Jamshedpur 4 1 1 1 1

Jaypore 4 1 1 1 1

Jodhpur 3 1 2 2 0

Kaithal 2 1 1 1 0

Kaithal (400 kV) 1 1 1 1 0

Kankroli 1 1 1 1 0

Kanpur (PG) 4 2 1 1 1

Kishenpur 3 1 1 1 0

Koteshwar 1 1 2 1 0

Maler Kotla 2 1 1 1 0

Maharani Bagh 2 5 3 3 1

Maithon 2 2 1 1 0

Mandaula 2 2 1 1 0

Meramandoli 4 3 2 1 1

Muzaffarpur 3 2 4 1 1

Panki 3 2 2 1 0

Patna 1 5 1 1 0

PG 2 1 1 1 1

PG Bisra 3 1 1 1 0

PG Kankroli 2 1 1 1 0

Raigarh 2 1 2 1 0

Ranchi 3 1 3 1 0

Rewari 3 1 1 1 0

Rourkela 4 1 2 1 1

Sabalgarh 1 1 1 1 0

Samaypur 2 1 1 1 0

Sasaram 3 4 2 1 1

Shivpuri 1 1 2 1 0

Suratgarh 1 1 2 1 0

Wagoora (PG) 1 1 1 1 0

Percent High/Very High 24.40% 8.90% 6.70% 0.00% 33.30%

Vulnerability Rankings
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4.4.2. Assessing Combinations of Variables with Equal Weights 

 Describing the vulnerability distributions of the factors indicated that each 

variable may add an extra dimension to assessing the vulnerability of a service area, and 

thus the vulnerability of the substation.  This section details the different combinations 

of variables and how well the combinations assess the vulnerability of the substations 

affected by the Indian blackout.  The various combinations included evenly weighted 

and a weighted analysis based on knowledge of the region to assess the impact of the 

weights on the results.  

4.4.2.1. Two Variable Combinations 

 There were six two-variable combinations assessed:  

o land use and population,  

o land use and other critical assets,  

o land use and betweenness,  

o population and other critical assets,  

o population and betweenness, and  

o other critical assets and betweenness.   

The resulting ranks for the substations affected on July 30
th

 (Table 4.9) and July 31
st

 

(Table 4.10) were compared to the rankings for the same nodes for betweenness. 

 For the 29 substations affected on July 30
th

, the two-variable combination that 

ranked the greatest percentage of affected substations as having high or very high 

vulnerability was land use and betweenness (44.8%), followed closely by population and 

betweenness (37.9%).  Using betweenness alone, 27.6% of the affected substations 
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were identified as having a high or very high vulnerability.  Additionally, the two-variable 

pairs with the highest percentages identified the same substations as having high and 

very high vulnerabilities as betweenness alone; however, the two variable pairs, such as 

land use and betweenness, added additional substations to the high and very highly 

vulnerable categories.  Combinations that included other critical assets did not have 

high percentages of substations identified.  Additionally, the combination of land use 

and population only identified 20.7% of the affected substations as having high or very 

high vulnerability (Table 4.9). 

             The substations impacted by the blackout on July 31
st

 exhibited similar results.  

The two-variable combinations with the highest percentage of affected substations 

being ranked as having high or very high vulnerability are the land use and 

betweenness, along with the population and betweenness combinations.  Like for the 

July 30
th

 event, these two combinations identified the same substations as betweenness 

alone, but also identified other vulnerable substations.  As with July 30
th

, the 

combinations containing other critical assets had the lowest identification percentages 

(Table 4.10).       
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Table 4.9: Vulnerability rankings by two-variable pair with even weights and by 

betweenness for substations affected by July 30, 2012 blackout. 

 

 

   

 

 

 

 

 

 

 

Substation Betweenness
Land Use-

Population

Land Use - 

Other Critical 

Assets

Land Use - 

Betweennness

Population - 

Other Critical 

Assets

Population - 

Betweenness

Other Critical 

Assets - 

Betweenness

Agra (PG) 2 1 1 2 1 2 2

Balia 1 4 3 3 3 3 1

Ballabarh (BBMB) 1 2 2 2 1 1 1

Bareilly 1 1 1 1 1 1 1

Bawana 2 1 1 2 1 2 2

Bhinmal 3 1 1 3 1 3 3

Biharshariff 4 5 4 5 4 5 4

Bina (PG) 3 2 1 3 2 4 3

Chittorgarh 1 1 1 1 1 1 1

Gorakhpur (PG) 4 1 1 4 1 4 4

Gwalior (PG) 5 3 2 4 4 5 5

Heerapura 4 1 1 4 1 4 4

Jaipur (PG) 3 1 1 3 1 3 3

Jamshedpur 4 1 1 4 1 4 4

Kanpur (PG) 4 2 2 4 1 4 4

Kota 5 2 1 4 2 5 5

Malanpur 2 4 4 5 1 2 2

Meerut 3 2 2 4 1 3 3

Muzaggarpur 3 4 2 4 4 5 3

Patna 1 4 4 4 1 1 1

PG Bisra 3 1 1 3 1 3 3

Rishikesh 1 2 1 1 2 2 1

Roorkee 2 2 1 2 2 3 2

Rourkela 4 2 1 4 2 4 4

Samaypur 2 1 1 2 1 2 2

Sanchore 1 1 1 1 1 1 1

Sasaram 3 4 4 5 2 4 3

Tehri 1 2 1 1 2 2 1

Udaipur 1 2 1 1 2 2 1

Percent High/Very High 27.60% 20.70% 13.80% 44.80% 10.30% 37.90% 27.60%

Vulneraiblity Rankings - Even Weights



www.manaraa.com

114 

 

Table 4.10: Vulnerability rankings by two-variable pair with even weights and by 

betweenness for substations affected by July 31, 2012 blackout. 

 

 

 

 

Substation Betweenness
Land Use-

Population

Land Use - 

Other Critical 

Assets

Land Use - 

Betweennness

Population - 

Other Critical 

Assets

Population - 

Betweenness

Other Critical 

Assets - 

Betweenness

Agra 5 3 4 5 4 5 5

Agra (PG) 2 1 1 2 1 2 2

Allahabad 4 4 4 4 4 5 5

Balia 1 4 3 4 3 3 1

Ballabarh (BBMB) 1 2 2 2 1 1 1

Bhiwadi 5 1 1 4 1 4 5

Biharshariff 4 5 4 5 4 5 4

Bina (PG) 3 2 1 4 2 4 3

Budhipadar 2 3 1 2 3 4 2

Dausa 3 1 1 3 1 3 3

Debari 1 2 1 1 2 2 1

Greater Noida 1 4 4 4 4 3 2

Gorakhpur (PG) 4 1 1 4 1 4 4

Gwalior (PG) 5 3 2 4 4 5 5

Jaipur (PG) 3 1 1 3 1 3 3

Jamshedpur 4 1 1 4 1 4 3

Jaypore 4 1 1 4 1 4 4

Jodhpur 3 2 2 4 3 4 4

Kaithal 2 1 1 2 1 2 2

Kaithal (400 kV) 1 1 1 1 1 1 1

Kankroli 1 1 1 1 1 1 1

Kanpur (PG) 4 2 2 4 1 4 4

Kishenpur 3 1 1 3 1 3 3

Koteshwar 1 2 1 1 2 2 1

Maler Kotla 2 1 1 2 1 2 1

Maharani Bagh 2 5 5 5 4 4 4

Maithon 2 2 2 3 1 2 2

Mandaula 2 2 2 3 1 2 2

Meramandoli 4 3 3 5 2 4 4

Muzaffarpur 3 4 2 4 4 5 3

Panki 3 3 2 4 2 4 3

Patna 1 4 4 4 1 1 1

PG 2 1 1 2 1 2 2

PG Bisra 3 1 1 3 1 3 3

PG Kankroli 2 1 1 2 1 2 2

Raigarh 2 2 1 2 2 3 2

Ranchi 3 3 1 4 3 4 3

Rewari 3 1 1 3 1 3 3

Rourkela 4 2 1 4 2 4 4

Sabalgarh 1 1 1 1 1 1 1

Samaypur 2 1 1 2 1 2 2

Sasaram 3 4 4 5 2 4 3

Shivpuri 1 2 1 1 2 2 1

Suratgarh 1 2 1 1 2 2 1

Wagoora (PG) 1 1 1 1 1 1 1

Percent High/Very High 24.40% 17.80% 15.60% 46.60% 15.60% 42.20% 28.90%

Vulneraiblity Rankings
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4.4.2.2. Three Variable Combinations 

 There were four three-variable combinations analyzed with equal weights:  

o land use – population – other critical assets,  

o land use – population – betweenness,  

o land use – other critical assets – betweenness, and  

o population – other critical assets – betweenness.   

These combinations were compared to events on both July 30 and 31 to determine each 

combination’s effectiveness. 

   With reference to the substations that were impacted during the July 30
th

 

event, the Land Use – Population - Betweenness (21%) combination performed the best 

of the three variable combinations, only second to assessing betweenness alone 

(27.6%).  While most of the substations maintained the same ranking when comparing 

the betweenness-only vulnerabilities with the Land Use – Population – Betweenness 

combination, five of the substations that were ranked with high or very high 

vulnerabilities in the betweenness-only analysis had a moderate vulnerability in the 

Land Use - Population – Betweenness combination.  In addition to these changes, three 

of the substations impacted on July 30
th

 changed rank from either very low, low, or 

moderate vulnerabilities to high or very high vulnerabilities.  By combining the results of 

betweenness-only analysis and the land use – population – betweenness combination, 

37.9% of the substations were ranked as having high or very high vulnerabilities (Table 

4.11).            
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Table 4.11: Vulnerability rankings by three-variable pairs with even weights and by 

betweenness for substations affected by July 30, 2012 blackout. 

 

 

 The substations impacted by the July 31
st

 event exhibited similar results; 

however, the highest scoring combinations in addition to the betweenness-only 

analysis, were the land use – other critical assets – betweenness and the population – 

other critical assets – betweenness combinations.  These high percentages were likely 

due to critical infrastructure having little impact on the vulnerability rankings of any of 

Substation Betweenness

Land Use - 

Population - 

Other Critical 

Assets

Land Use - 

Population - 

Betweenness

Land Use - Other 

Critical Assets - 

Betweenness

Population - Other 

Critical Assets - 

Betwenness

Agra (PG) 2 1 2 3 2

Balia 1 3 3 3 3

Ballabarh 1 2 2 3 1

Bareilly 1 1 1 1 1

Bawana 2 1 2 3 2

Bhinmal 3 1 2 3 3

Biharshariff 4 4 5 5 5

Bina (PG) 3 2 2 3 3

Chittorgarh 1 1 1 1 1

Gorakhpur (PG) 4 1 2 3 3

Gwalior (PG) 5 3 4 5 5

Heerapura 4 1 2 3 3

Jaipur (PG) 3 1 2 3 3

Jamshedpur 4 1 2 3 3

Kanpur (PG) 4 2 3 3 3

Kota 5 2 4 4 4

Malanpur 2 3 4 2 2

Meerut 3 2 2 3 3

Muzaggarpur 3 3 4 4 4

Patna 1 3 3 1 1

PG Bisra 3 1 2 3 3

Rishikesh 1 2 2 2 2

Roorkee 2 2 2 3 3

Rourkela 4 2 3 4 4

Samaypur 2 1 2 2 2

Sanchore 1 1 1 1 1

Sasaram 3 3 4 3 3

Tehri 1 2 2 2 2

Udaipur 1 2 2 2 2

%(Very)High 27.60% 3.40% 20.70% 17.20% 17.20%

Vulnerability Rankings
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these substations, so the results are similar to that of using population – betweenness 

and land use –betweenness pairings, dampened by the inclusion of critical 

infrastructure.  With this knowledge, the land use – population – betweenness 

combination was the best performer.  Three substations that were ranked as having 

high or very high vulnerabilities in the betweenness-only analysis were ranked as having 

a moderate vulnerability in the land Use – population – betweenness combination, but 

that was in addition to the three impacted substations in the high or very high 

vulnerability categories.  Another important distinction was that none of the New Delhi 

substations impacted by the July 31
st

 blackout were ranked as having a high or very high 

vulnerability in the betweenness-only analysis, but one, Maharani Bagh substation, was 

identified as having a very high vulnerability in the land use – population – betweenness 

combination.  Using only the betweenness metric would have missed entirely the New 

Delhi area’s vulnerability to blackouts (Table 4.12). 
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Table 4.12: Vulnerability rankings by three-variable pair with even weights       

and by betweenness for substations affected by July 31, 2012 blackout. 

 

Substation Betweenness

Land Use - 

Population - 

Other Critical 

Assets

Land Use - 

Population - 

Betweenness

Land Use - 

Other Critical 

Assets - 

Betweenness

Population - 

Other Critical 

Assets - 

Betwenness

Agra 5 4 5 5 5

Agra (PG) 2 1 2 3 2

Allahabad 4 4 5 5 5

Balia 1 3 3 3 3

Ballabarh (BBMB) 1 2 2 3 1

Bhiwadi 5 1 3 4 4

Biharshariff 4 4 5 5 5

Bina (PG) 3 2 2 3 3

Budhipadar 2 2 2 3 3

Dausa 3 1 2 3 3

Debari 1 2 2 1 2

Greater Noida 1 4 3 3 3

Gorakhpur (PG) 4 1 2 3 3

Gwalior (PG) 5 3 4 5 5

Jaipur (PG) 3 1 2 3 3

Jamshedpur 4 1 2 3 3

Jaypore 4 1 2 3 3

Jodhpur 3 2 2 3 4

Kaithal 2 1 2 3 2

Kaithal (400 kV) 1 1 1 1 1

Kankroli 1 1 1 1 1

Kanpur (PG) 4 2 3 4 3

Kishenpur 3 1 2 3 3

Koteshwar 1 2 2 1 2

Maler Kotla 2 1 2 1 1

Maharani Bagh 2 5 5 5 4

Maithon 2 2 2 3 2

Mandaula 2 2 2 3 2

Meramandoli 4 3 4 5 4

Muzaffarpur 3 3 4 3 4

Panki 3 2 3 3 3

Patna 1 3 3 4 1

PG 2 1 2 3 2

PG Bisra 3 1 2 3 3

PG Kankroli 2 1 2 3 2

Raigarh 2 2 2 3 3

Ranchi 3 2 3 3 4

Rewari 3 1 2 3 3

Rourkela 4 2 3 3 4

Sabalgarh 1 1 1 1 1

Samaypur 2 1 2 3 2

Sasaram 3 3 4 5 3

Shivpuri 1 2 2 1 2

Suratgarh 1 2 2 1 2

Wagoora (PG) 1 1 1 1 1

Percent High/Very High 24.40% 11.10% 17.80% 22.20% 24.40%

Vulnerability Rankings
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4.4.2.3. Four-Variable Combination 

 Based on the previous results of the combinations of the variables, it was clear 

that the four-variable combination would likely not be the best choice, as the other 

critical assets information added no additional information when combined with any of 

the other factors.  20.7% of the substations impacted on July 30
th

 were ranked as having 

high or very high vulnerability, compared to 27.6% identified with the same rankings 

using betweenness alone.  Three substations not identified only using betweenness 

were identified, while losing five impacted substations to the moderate vulnerability 

class (Table 4.12).  The substations impacted on July 31
st

 showed a similar pattern to the 

two-variable and three-variable combinations where all of the combinations were less 

effective in identifying impacted substations as having high or very high vulnerabilities.  

Six of the substations impacted on July 31
st

 that were identified as having high or very 

high vulnerability in the betweenness-only analysis were considered as having moderate 

vulnerability in the all-variable combination.  That being said, four substations not 

identified by the betweenness-only analysis were identified as having high or very high 

vulnerability in the all-variable combination.  Like in the three-variable combinations, 

this all-variable combination identified substations in New Delhi as having very high 

vulnerability, and thus, would have been potentially protected beforehand for having 

known vulnerabilities (Table 4.13). 
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Table 4.13: Vulnerability rankings for an all-variable combination with even weights and 

for betweenness for substations affected by both days of the Indian blackout. 

 

 

Substation Betweenness Even All Four Substation Betweenness Even All Four

Agra (PG) 2 2 Agra 5 5

Balia 1 3 Agra (PG) 2 2

Ballabarh 1 2 Allahabad 4 5

Bareilly 1 1 Balia 1 3

Bawana 2 2 Ballabarh (BBMB) 1 2

Bhinmal 3 2 Bhiwadi 5 3

Biharshariff 4 5 Biharshariff 4 5

Bina (PG) 3 3 Bina (PG) 3 3

Chittorgarh 1 1 Budhipadar 2 3

Gorakhpur (PG) 4 3 Dausa 3 2

Gwalior (PG) 5 4 Debari 1 2

Heerapura 4 3 Greater Noida 1 4

Jaipur (PG) 3 2 Gorakhpur (PG) 4 3

Jamshedpur 4 3 Gwalior (PG) 5 4

Kanpur (PG) 4 3 Jaipur (PG) 3 2

Kota 5 4 Jamshedpur 4 3

Malanpur 2 4 Jaypore 4 3

Meerut 3 3 Jodhpur 3 3

Muzaggarpur 3 4 Kaithal 2 2

Patna 1 3 Kaithal (400 kV) 1 1

PG Bisra 3 2 Kankroli 1 1

Rishikesh 1 2 Kanpur (PG) 4 3

Roorkee 2 2 Kishenpur 3 2

Rourkela 4 3 Koteshwar 1 2

Samaypur 2 2 Maler Kotla 2 1

Sanchore 1 1 Maharani Bagh 2 5

Sasaram 3 4 Maithon 2 2

Tehri 1 2 Mandaula 2 2

Udaipur 1 2 Meramandoli 4 4

Percent High/Very High 27.60% 20.70% Muzaffarpur 3 4

Panki 3 3

Patna 1 3

PG 2 2

PG Bisra 3 2

PG Kankroli 2 2

Raigarh 2 2

Ranchi 3 3

Rewari 3 2

Rourkela 4 3

Sabalgarh 1 1

Samaypur 2 2

Sasaram 3 4

Shivpuri 1 2

Suratgarh 1 2

Wagoora (PG) 1 1

Percent 

High/Very High 24.40% 20.00%

Vulnerability Rankings

July 30, 2012

Vulnerability Rankings

July 31, 2012
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4.4.3. Weighted Versions of Best Performer of Variable Combinations 

 Some variable combinations performed better than others.  For example, those 

combinations including other critical assets tended to perform more poorly than those 

containing land use or population.  This section used AHP to weight the best variable 

combinations based on the analysis of how much each variable contributed to the 

identifying vulnerabilities in those substations impacted by the Indian blackout.  

Pairwise comparisons were performed based on the pertinent information and 

averaged based on response of several experts. 

4.4.3.1. Weighted Two-Variable Combinations 

 The best performers of the two-variable combinations were the land use and 

betweenness combination and the land use and population combination.  When 

analyzing each variable individually, betweenness was able to account for more 

substations during both days, so it is considered a more important variable, followed by 

land use, and then population.  The pairwise comparisons reflect these findings.  In the 

land use and betweenness combination, the resulting weights from the AHP analysis 

had betweenness weighted 0.75 and land use weighted 0.25.  In the land use and 

population combination, the resulting weights from the AHP analysis had betweenness 

weighted as 0.89 and population weighted as 0.12, as population was the least 

important variable in determining the vulnerabilities of substations.  For both July 30
th

 

and 31
st

, the land use and betweenness combination performed the best (41.38% and 

33.3%, respectively).  Comparing the results of the land use and betweenness and the 

population and betweenness combinations indicate that the population and 



www.manaraa.com

122 

 

betweenness combination added no new information to the analysis, identifying fewer 

substations as high or very highly vulnerable.  Those substations that were ranked as 

having high or very high vulnerability were also identified as such by the land use and 

betweenness combination (Table 4.14). 

 

Table 4.14: Weighted two-variable combination results. 

 

Substation Betweenness
Land Use - 

Betweennness

Population - 

Betweenness
Substation Betweenness

Land Use - 

Betweennness

Population - 

Betweenness

Agra (PG) 2 2 2 Agra 5 5 5

Balia 1 2 1 Agra (PG) 2 2 2

Ballabarh (BBMB) 1 2 1 Allahabad 4 5 5

Bareilly 1 1 1 Balia 1 2 1

Bawana 2 2 2 Ballabarh (BBMB) 1 2 1

Bhinmal 3 3 3 Bhiwadi 5 5 5

Biharshariff 4 5 5 Biharshariff 4 5 5

Bina (PG) 3 3 3 Bina (PG) 3 3 3

Chittorgarh 1 1 1 Budhipadar 2 2 2

Gorakhpur (PG) 4 4 4 Dausa 3 3 3

Gwalior (PG) 5 5 5 Debari 1 1 1

Heerapura 4 4 4 Greater Noida 1 2 1

Jaipur (PG) 3 3 3 Gorakhpur (PG) 4 4 4

Jamshedpur 4 4 4 Gwalior (PG) 5 5 5

Kanpur (PG) 4 5 4 Jaipur (PG) 3 3 3

Kota 5 5 5 Jamshedpur 4 4 4

Malanpur 2 4 2 Jaypore 4 4 4

Meerut 3 4 3 Jodhpur 3 3 3

Muzaggarpur 3 4 4 Kaithal 2 2 2

Patna 1 3 1 Kaithal (400 kV) 1 1 1

PG Bisra 3 3 3 Kankroli 1 1 1

Rishikesh 1 1 1 Kanpur (PG) 4 5 4

Roorkee 2 2 2 Kishenpur 3 3 3

Rourkela 4 4 4 Koteshwar 1 1 1

Samaypur 2 2 2 Maler Kotla 2 2 2

Sanchore 1 1 1 Maharani Bagh 2 4 2

Sasaram 3 4 3 Maithon 2 3 2

Tehri 1 1 1 Mandaula 2 3 2

Udaipur 1 1 1 Meramandoli 4 5 4

Percent High/Very High 27.60% 41.38% 31.03% Muzaffarpur 3 4 4

Panki 3 4 3

Patna 1 3 1

PG 2 2 2

PG Bisra 3 3 3

PG Kankroli 2 2 2

Raigarh 2 2 2

Ranchi 3 3 3

Rewari 3 3 3

Rourkela 4 4 4

Sabalgarh 1 1 1

Samaypur 2 2 2

Sasaram 3 4 3

Shivpuri 1 1 1

Suratgarh 1 1 1

Wagoora (PG) 1 1 1

Percent High/Very 

High 24.40% 33.30% 26.70%

Vulneraiblity Rankings Vulneraiblity Rankings

July 30, 2012 July 31, 2012
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4.4.3.2. Weighted Three-Variable Combinations 

 The three variable combinations selected for weighted analysis were the land 

use – betweenness – population, the land use – other critical assets – betweenness, and 

the population – other critical assets – betweenness combinations.  The weights were 

once again determined based on pairwise comparisons of the relationship of each 

variable to explaining the substations impacted by the black out.  In the land use – 

betweenness – population combination, land use was weighted as 0.24, population as 

0.06, and betweenness at 0.70.  In the land use – other critical assets – betweenness 

combination, land use was weighted as 0.25, betweenness as 0.70, and other critical 

assets as 0.05.  The final combination, population – other critical assets – betweenness, 

had population weighted as 0.21, other critical assets weighted as 0.05, and 

betweenness weighted as 0.74.  For both blackouts, each combination had relatively the 

same results, only slightly better than the betweenness-only analysis (between 2 and 4% 

better) (Table 4.15).  Additionally, any substations identified with high or very high 

vulnerabilities were also identified in the land use and betweenness combination from 

the two-variable combinations as having high or very high vulnerabilities.     
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Table 4.15: Weighted three-variable combination results. 

 

 

4.4.3.3. All Variable Weighted Combination 

 The final combination includes all of the variables: betweenness, population, 

land use, and other critical assets.  As in the two and three-variable combinations, the 

weights were determined based on AHP with pairwise comparisons of each variable.  

Substation Betweenness

Land Use - 

Population - 

Betweenness

Land Use - 

Other Critical 

Assets - 

Betweenness

Population - 

Other 

Critical 

Assets - 

Betwenness

Substation Betweenness

Land Use - 

Population - 

Betweenness

Land Use - 

Other Critical 

Assets - 

Betweenness

Population - 

Other 

Critical 

Assets - 

Betwenness

Agra (PG) 2 2 2 2 Agra 5 5 5 5

Balia 1 2 2 1 Agra (PG) 2 2 2 2

Ballabarh 1 1 1 1 Allahabad 4 4 5 5

Bareilly 1 1 1 1 Balia 1 2 2 1

Bawana 2 2 2 2 Ballabarh (BBMB) 1 1 1 1

Bhinmal 3 3 3 3 Bhiwadi 5 5 5 5

Biharshariff 4 5 5 5 Biharshariff 4 5 5 5

Bina (PG) 3 3 3 3 Bina (PG) 3 3 3 3

Chittorgarh 1 1 1 1 Budhipadar 2 2 2 2

Gorakhpur (PG) 4 4 4 4 Dausa 3 3 3 3

Gwalior (PG) 5 5 5 5 Debari 1 1 1 1

Heerapura 4 4 4 4 Greater Noida 1 2 2 1

Jaipur (PG) 3 3 3 3 Gorakhpur (PG) 4 4 4 4

Jamshedpur 4 4 4 4 Gwalior (PG) 5 5 5 5

Kanpur (PG) 4 4 4 4 Jaipur (PG) 3 3 3 3

Kota 5 5 5 5 Jamshedpur 4 4 4 4

Malanpur 2 3 3 2 Jaypore 4 4 4 4

Meerut 3 3 3 3 Jodhpur 3 3 3 3

Muzaggarpur 3 3 3 4 Kaithal 2 2 2 2

Patna 1 2 2 1 Kaithal (400 kV) 1 1 1 1

PG Bisra 3 3 3 3 Kankroli 1 1 1 1

Rishikesh 1 1 1 1 Kanpur (PG) 4 4 4 4

Roorkee 2 2 2 2 Kishenpur 3 3 3 3

Rourkela 4 4 4 4 Koteshwar 1 1 1 1

Samaypur 2 2 2 2 Maler Kotla 2 2 1 1

Sanchore 1 1 1 1 Maharani Bagh 2 3 4 3

Sasaram 3 4 4 3 Maithon 2 2 2 2

Tehri 1 1 1 1 Mandaula 2 2 2 2

Udaipur 1 1 1 1 Meramandoli 4 5 5 4

Percent High/ 27.60% 31.00% 31.00% 31.00% Muzaffarpur 3 3 3 4

Very High Panki 3 3 3 3

Patna 1 2 2 1

PG 2 2 2 2

PG Bisra 3 3 3 3

PG Kankroli 2 2 2 2

Raigarh 2 2 2 2

Ranchi 3 3 3 3

Rewari 3 3 3 3

Rourkela 4 4 4 4

Sabalgarh 1 1 1 1

Samaypur 2 2 2 2

Sasaram 3 4 4 3

Shivpuri 1 1 1 1

Suratgarh 1 1 1 1

Wagoora (PG) 1 1 1 1

Percent 

High/Very High 24.40% 26.70% 28.90% 26.70%

Vulnerability Rankings Vulnerability Rankings

July 30, 2012 July 31, 2012
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For this analysis, betweenness was weighted as 0.62, population as 0.10, land use as 

0.24, and additional critical assets as 0.04.  For both blackout days this four variable 

combination performed better than betweenness alone; however, this performance 

was still not better than the betweenness and land use combination.  Additionally, the 

four-variable combination provided no new information when compared to the 

betweenness and land use combination; all of the substations identified as having a high 

or very high vulnerability were identified by both combinations, with more information 

being provided by the betweenness – land use combination (Table 4.16). 
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Table 4.16: Weighted all-variable combination results. 

      

 

 

Substation Betweenness
Weighted All 

Four
Substation Betweenness

Weighted All 

Four

Agra (PG) 2 2 Agra 5 5

Balia 1 2 Agra (PG) 2 2

Ballabarh 1 1 Allahabad 4 5

Bareilly 1 1 Balia 1 2

Bawana 2 2 Ballabarh (BBMB) 1 1

Bhinmal 3 3 Bhiwadi 5 5

Biharshariff 4 5 Biharshariff 4 5

Bina (PG) 3 3 Bina (PG) 3 3

Chittorgarh 1 1 Budhipadar 2 2

Gorakhpur (PG) 4 4 Dausa 3 3

Gwalior (PG) 5 5 Debari 1 1

Heerapura 4 4 Greater Noida 1 2

Jaipur (PG) 3 3 Gorakhpur (PG) 4 4

Jamshedpur 4 4 Gwalior (PG) 5 5

Kanpur (PG) 4 4 Jaipur (PG) 3 3

Kota 5 5 Jamshedpur 4 4

Malanpur 2 3 Jaypore 4 4

Meerut 3 3 Jodhpur 3 3

Muzaggarpur 3 4 Kaithal 2 2

Patna 1 2 Kaithal (400 kV) 1 1

PG Bisra 3 3 Kankroli 1 1

Rishikesh 1 1 Kanpur (PG) 4 4

Roorkee 2 2 Kishenpur 3 3

Rourkela 4 4 Koteshwar 1 1

Samaypur 2 2 Maler Kotla 2 1

Sanchore 1 1 Maharani Bagh 2 4

Sasaram 3 4 Maithon 2 2

Tehri 1 1 Mandaula 2 2

Udaipur 1 1 Meramandoli 4 5

Percent High/Very High 27.60% 38.50% Muzaffarpur 3 4

Panki 3 3

Patna 1 2

PG 2 2

PG Bisra 3 3

PG Kankroli 2 2

Raigarh 2 2

Ranchi 3 3

Rewari 3 3

Rourkela 4 4

Sabalgarh 1 1

Samaypur 2 2

Sasaram 3 4

Shivpuri 1 1

Suratgarh 1 1

Wagoora (PG) 1 1

Percent 

High/Very High 24.40% 31.10%

Vulnerability Rankings

July 30, 2012

Vulnerability Rankings

July 31, 2012
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4.4.4. Graph Metrics and Non-Climatic Factor Findings 

 The analyses performed for the second approach indicate the importance of 

landscape factors in helping to assess the vulnerability of the grid.  Of the greatest 

importance (in addition to the betweenness metric) was land use.  The combination of 

land use and betweenness provided the most information about substations that were 

and are vulnerable.  Of particular interest was the addition of Maharani Bagh substation 

as being vulnerable with the addition of land use.  Using only betweenness Maharani 

Bagh had a low vulnerability, as did all of the substations surrounded New Delhi; 

however, with the addition of land use, the New Delhi Area substations, such as 

Maharani Bagh, had elevated vulnerability, as Delhi is a highly urban area of India.  

Interestingly, the evenly weighted combinations had a greater accuracy the weighted 

combinations by around 3%.  Figure 4.10 illustrates the even weights results for the 

impacted areas.  When compared to the betweenness-only analysis (Figures 4.4 and 

4.5), a much larger portion of the impacted area was identified as having a high or very 

high vulnerability. 
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Figure 4.10: Even weights results for impacted substations for the                   

betweenness and land use combination. 

 

 There is no difference in the rankings of the substations between the weighted 

and even weights for the betweenness – land use combination for July 30th; however, 

there are slight differences in the rankings for July 31
st

 (Figure 4.10).  It is also interesting 

to note the effects of the weights.  In even weights, both variables are weighted 0.5, 

July 31 

July 30 
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while in the weighted analysis, betweenness is weighted 0.75 and land use is weighted 

0.25.  That small change in the weights dampens the scores of some substations that 

were vulnerable when evenly weighted (Figure 4.10 and 4.11). 

 

 
 

 
Figure 4.11: Weighted results for impacted substations for the            

betweenness and land use combination. 
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 Overall this combination shows an interesting pattern of vulnerability (Figure 

4.12).  The majority of the substations ranked with high or very high vulnerabilities were 

either very large substations or were located in the eastern region of the study area.  In 

both analyses there is a belt of vulnerable service areas running through north central 

India across and through east India.  Additionally, there are substations ranked with high 

and very high vulnerabilities disbursed throughout the country, but once again, mainly 

in the eastern part of the study area.  Interestingly, neither Nepal nor Bhutan have any 

service areas ranked with high or very high vulnerabilities.     

There may be several reasons why the betweenness and land use combination 

was the best performing combination assessed.  Firstly, land use can often be seen as a 

proxy for demand.  For instance, urban areas obviously utilize more power than a forest, 

and thus can be more vulnerable to electrical outages.  The Enquiry Committee report 

(Ministry of Power 2012) for the Indian blackout indicated Delhi’s vulnerability because 

their metro system is dependent on electrical power.  In addition to structural 

vulnerabilities, there are engineering vulnerabilities where other critical infrastructure 

systems depend on the electrical grid to provide them with the power they need to 

function for the citizenry. Additionally, media sources widely cite the drought and 

temperature extremes as reasons for the blackout, because farmers are not receiving 

the necessary rain water to keep their crops healthy (Philpott and Jones 2012).  To 

circumvent this, farmers are using more power to run their water pumps to irrigate their 

crops and maintain their financial viability (Philpott and Jones 2012).   
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Figure 4.12: Geographic distribution of vulnerability rankings for the betweenness and 

land use combinations. 

 

4.5. Inclusion of Climate and Natural Hazards Results 

 While there is little indication that climate or natural hazards played a role in the 

July 2012 black out, these variable may be important for other events, or assessing the 

overall vulnerability of the Indian – Nepali – Bhutanese grid system.  Additionally, little 

attention has been given to the inclusion of climate variables and natural hazards in the 

critical infrastructure protection literature, so this dissertation approach seeks to 

provide a basic method for addressing the dearth of climate variable inclusion.   
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4.5.1. Assessment of the Variables     

 Natural hazards occur in any place where humans are, and knowing where past 

hazards have occurred can be useful information for knowing what substations are 

vulnerable to such hazards in the future.  Of particular interest in this dissertation 

research were cyclones (called typhoons in this part of the world), landslides, and 

earthquakes.  The geographic distribution of the vulnerability to these hazards was 

based on the frequency of past occurrences (see Chapter 3 for more information).  For 

example, the eastern part of India tended to have more cyclones than the western part.  

Additionally, the northern part of the study area, including Bhutan and Nepal, was more 

prone to landslides, likely due to its mountainous terrain.  The study area was also most 

prone to earthquakes in the northern region due to the plate boundary; additionally, 

Gujarat (western India) also experienced large earthquakes in its recent history.  Note, 

that much of central India had a fairly low vulnerability to these hazards (Figure 4.13).  It 

is important to note that these hazards have very little bearing on the events in July 

2012.  This information, however, should be used to assess general substation 

vulnerability. 

Climate extremes were another variable that had not often been included in 

critical infrastructure vulnerability analyses; however, increases in temperature often 

lead to increases in demand.  The temperature extremes dataset was derived from the 

daily maximum temperature and temperature maximum normal temperatures (see 

Chapter 3 for a more robust discussion).  While temperature extremes appeared to have 

little to do with this particular blackout, temperature extremes explained some of the 
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outages in the northern region that were not considered vulnerable either in terms of 

topology (betweenness) or land use (Figure 4.14).  On July 30
th

, 6.9% of the impacted 

substations were located in regions that experienced a very high diversion from normal 

temperatures, and on July 31
st

 6.7% of the impacted substations experienced the same. 

The Spearman correlations values between the variables (betweenness, land 

use, population, “other” critical assets, cyclones, earthquakes, landslides, and 

temperature extremes) show some interesting patterns (Table 4.17).  For the majority of 

the variables, the correlations were only either slightly positive or slightly negative, with 

few moderate to strong correlations.  One strong correlation was the correlation 

between the temperature extremes of July 30 and July 31.  Of course the temperature 

extremes for July 30 and 31 should be highly correlated, because the temperatures at 

any given place should not be too different from day to day.  Additionally, these two 

variables would never be in the same model, so their high correlation was of little 

concern to the research. One interesting moderate correlation was between landslides 

and the temperature extremes for July 30 and July 31.  This may be indicative of the fact 

that the majority of the very high temperature extremes were in the northern part of 

the study area, located in the foothills of the Himalayas.  This was where the majority of 

the landslides occur in the study region. 
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Figure 4.13:  Geographic distribution of natural hazard vulnerability. 
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Figure 4.14: Geographic distribution of temperature extremes vulnerability. 
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Table 4.17: Variable correlations using the Spearman method; values significant at the 

0.05 level are marked in bold. 

 

 

 

 Interesting correlations emerge when the variables of interest were correlated 

with the capacity of the substations (Table 4.18).  The capacity of the substations was 

moderately correlated to its betweenness.  This was probably due to larger substations 

being more important to the overall flow of the graph.  Another interesting correlation 

was the moderate correlation between population and capacity.  This may be due to the 

fact that when substations have a higher capacity, they were usually built to supply a 

larger population.  With this knowledge, one might conclude that increasing the number 

of substations, but reducing the overall capacity of the substations may decrease the 

overall vulnerability of the electrical grid. 

Betweenness Land Use Population

Other 

Critical 

Assets

Cyclones Earthquakes Landslides

July 30 

Temperature 

Extremes

Betweenness 1 0.156 0.164 0.132 0.093 0.052 -0.033 0.028

Land Use 0.156 1 0.369 0.339 0.295 0.032 0.032 0.116

Pouplation 0.164 0.369 1 0.422 0.152 -0.005 -0.009 0.095

Other Critical 

Assets 0.132 0.339 0.422 1 0.089 0.121 0.188 0.111

Cyclones 0.093 0.295 0.152 0.089 1 0.127 0.064 0.131

Earthquakes 0.052 0.032 -0.005 0.121 0.127 1 0.468 0.125

Landslides -0.033 0.032 -0.009 0.188 0.064 0.468 1 0.369

July 30 

Temperature 

Extremes 0.028 0.116 0.95 0.111 0.131 0.125 0.369 1



www.manaraa.com

137 

 

                    Table 4.18: Capacity  

                   Correlations; bold are  

                significant to the 0.05  

                significance level. 

 

 

 Another visualization mechanism for determining the relationship between and 

among variables used by this research was to identify the vulnerability rankings for the 

pairwise comparisons for each substation.  Three substations were chosen: Biharshariff 

(Table 4.19), Gwalior (Table 4.20), and Rishikesh (Table 4.21).  Biharshariff was chosen 

because the majority of pairwise comparisons found it to be vulnerable.  Gwalior was 

chosen because the pairwise comparisons were a mix of vulnerable and not vulnerable 

outcomes.  Rishikesh was chosen because most of the pairwise comparisons yielded low 

vulnerability ranks.  The color scheme is the same color scheme described in Figure 4.6.  

These plots show interesting relationships between the variables.  For instance, a large 

portion of Biharshariff’s matrix was highly or very highly vulnerable; however, with the 

inclusion and combination of other critical assets, natural hazards, and temperature 

Capacity

Capacity 1

Betweenness 0.339

Land Use 0.106

Population 0.221

Other Critical 

Assets 0.116

Earthquakes -0.066

Landslides -0.144

Cyclones 0.095

July 30 

Temperature 

Extremes 0.029
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extremes, the matrix changed and the substations had a low or very low vulnerability 

ranking.  Interestingly, the opposite is true for the Rishikesh substation. 

 

Table 4.19: Pairwise comparison rankings for Biharshariff substation. 

 

 

Table 4.20: Pairwise comparison rankings for Gwalior substation. 

 

 

Table 4.21: Pairwise comparison rankings for Rishikesh substation. 

 

 

Betweenness Land Use Population
Other Critical 

Assets

Natural 

Hazards

Temperature 

Extremes

Betweenness 4 5 5 4 3 5

Land Use 5 4 5 4 3 5

Population 5 5 4 4 4 5

Other Critical Assets 1 4 4 1 1 2

Natural Hazards 3 3 4 1 1 2

Temperature Extremes 3 3 3 1 1 1

Biharshariff

Betweenness Land Use Population
Other Critical 

Assets

Natural 

Hazards

Temperature 

Extremes

Betweenness 5 4 5 5 4 5

Land Use 4 1 3 2 2 3

Population 5 3 3 4 3 3

Other Critical Assets 5 2 4 2 3 2

Natural Hazards 4 2 3 3 1 1

Temperature Extremes 5 3 3 2 1 1

Gwalior

Betweenness Land Use Population
Other Critical 

Assets

Natural 

Hazards

Temperature 

Extremes

Betweenness 1 1 2 1 3 5

Land Use 1 1 2 1 3 5

Population 2 2 2 2 4 5

Other Critical Assets 1 1 2 1 4 5

Natural Hazards 3 3 4 4 2 4

Temperature Extremes 5 5 5 5 4 5

Rishikesh
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 It is also interesting to note the similarities between the hazards data and the 

betweenness and land use combination results (Figure 4.15).  Both natural hazards and 

betweenness identified the eastern coast as being vulnerable, as well as the eastern 

part of the country.  There are, however, differences, where combining these data was 

useful.  For example, the middle belt of India was where the betweenness and land use 

combination vulnerabilities were the highest (mainly irrigated cropland area) was not 

considered vulnerable when looking at only hazards information.  

                                                                                                    

 

 

Figure 4.15: Betweenness and land use combination comparison with hazards. 
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4.5.2. Natural Hazards 

 In this approach natural hazards were included with land use and betweenness 

(the best performers from the previous approach) to show general vulnerabilities in the 

Indian – Nepali – Bhutanese grid system.  As stated, natural hazards did not play a role 

in the July 2012 blackout; however, this information was useful for assessing general 

substation vulnerability.  This dissertation framework also presented methods for 

situation-based approaches that can take warnings and predict substation 

vulnerabilities based on those warning areas.  Additionally, natural hazards often have 

seasonal occurrences.  For instance, in India the cyclone season begins in April and ends 

in June, and there is another period of activity from the end of September through the 

beginning of December.  During these months the cyclone activity might be weighted 

greater to indicate the heightened threat of activity.       

 Two analyses were conducted for natural hazards: one with even weights and a 

second with uneven weights.  For the weighted analysis, land use was weighted as 

0.410, betweenness was weighted as 0.410, and each individual hazard was weighted as 

0.059 each.  Each analysis had the exact same rankings for the substations impacted on 

July 30
th

 and 31
st

 as the betweenness and land use even-weighted analysis.  This may be 

due to the fact that there were very few places with very high vulnerabilities to any one 

of the particular hazards.  For cyclones, the majority of the highly and very highly 

vulnerable locations were located along the eastern coastline, in areas that were 

already identified as vulnerable.  With landslides, there were even fewer locations with 

high or very high vulnerabilities (located in the northern and eastern-most regions), and 
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those that were highly or very highly vulnerable were areas that have very low 

vulnerabilities with regards to land use and betweenness.  Thus, these very high 

vulnerabilities would not have as large of an impact on the score.  A similar situation 

evolved with earthquakes, as the majority of the high and very high vulnerabilities occur 

in areas with low to land use and betweenness vulnerabilities, such as Nepal and 

western Gujarat.   

 Figure 4.16 depicts the geographic distribution of the vulnerabilities for both 

analyses.  The results varied little from the geographic distribution of the land use and 

betweenness evenly weighted analysis depicted in Figure 4.12.   
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      Figure 4.16: Natural hazard analysis vulnerability distribution.     

 

4.5.3. Climatic Extremes 

 The inclusion of climate change variables in models dealing with critical 

infrastructure vulnerability is of interest to researchers, as it has not been widely 

attempted.  The approach including climatic extremes built upon the previous analysis 

including betweenness and land use.  An additional combination with the natural 

hazards data was included for analysis as well.   
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 The inclusion of the temperature extremes data was helpful in identifying 

additional vulnerable nodes from the July 30
th

 blackout.  However, including 

temperature extremes also identified several nodes (two nodes) that were considered 

vulnerable in the land use and betweenness analysis as having only moderate 

vulnerability, while adding three nodes to the high or very high vulnerability ranking.  

This yielded 51.7% of the substations impacted on July 30
th

 being identified as having 

high or very high vulnerability (Table 4.22).  There was no difference in the results with 

the addition of the natural hazards datasets, and the performance of the weighted 

analysis was the same as the land use and betweenness combination (Table 4.23).  The 

weights for the land use, betweenness, and temperature extremes combination were 

0.47, 0.47, and 0.06, respectively.  With the addition of the natural hazards datasets, the 

weights were 0.39 for land use, 0.39 for betweenness, 0.08 for temperature extremes, 

and 0.05 each for the individual natural hazards datasets (cyclones, landslides, and 

earthquakes). 
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Table 4.22: Even-weight vulnerability rankings for combinations with  

temperature extremes. 

 

 

 

Substation Betweenness
Land Use - 

Betweennness

July 30 Temps 

with Land Use - 

Betweenness

July 30 Temps 

with Land Use - 

Betweenness 

and Natural 

Hazards

Agra (PG) 2 2 2 2

Balia 1 3 3 3

Ballabarh (BBMB) 1 2 2 2

Bareilly 1 1 1 1

Bawana 2 2 2 2

Bhinmal 3 3 4 4

Biharshariff 4 5 5 5

Bina (PG) 3 3 3 3

Chittorgarh 1 1 1 1

Gorakhpur (PG) 4 4 4 4

Gwalior (PG) 5 4 4 4

Heerapura 4 4 4 4

Jaipur (PG) 3 3 4 4

Jamshedpur 4 4 4 4

Kanpur (PG) 4 4 4 4

Kota 5 4 4 4

Malanpur 2 5 4 4

Meerut 3 4 3 3

Muzaggarpur 3 4 4 4

Patna 1 4 4 4

PG Bisra 3 3 3 3

Rishikesh 1 1 4 4

Roorkee 2 2 2 2

Rourkela 4 4 3 3

Samaypur 2 2 2 2

Sanchore 1 1 1 1

Sasaram 3 5 5 5

Tehri 1 1 4 4

Udaipur 1 1 3 3

Percent High/Very High 27.60% 44.80% 51.70% 51.70%

Vulneraiblity Rankings - Even Weights
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Table 4.23: Weighted vulnerability rankings for combinations with                   

temperature extremes. 

 

 

Substation Betweenness
Land Use - 

Betweennness

July 30 Temps 

with Land Use - 

Betweenness

July 30 Temps 

with Land Use - 

Betweenness 

and Natural 

Hazards

Agra (PG) 2 2 2 2

Balia 1 3 3 3

Ballabarh (BBMB) 1 2 2 2

Bareilly 1 1 1 1

Bawana 2 2 2 2

Bhinmal 3 3 3 3

Biharshariff 4 5 5 5

Bina (PG) 3 3 3 3

Chittorgarh 1 1 1 1

Gorakhpur (PG) 4 4 4 4

Gwalior (PG) 5 4 4 4

Heerapura 4 4 4 4

Jaipur (PG) 3 3 3 3

Jamshedpur 4 4 4 4

Kanpur (PG) 4 4 4 4

Kota 5 4 4 4

Malanpur 2 5 5 5

Meerut 3 4 4 4

Muzaggarpur 3 4 4 4

Patna 1 4 4 4

PG Bisra 3 3 3 3

Rishikesh 1 1 2 2

Roorkee 2 2 2 2

Rourkela 4 4 4 4

Samaypur 2 2 2 2

Sanchore 1 1 1 1

Sasaram 3 5 5 5

Tehri 1 1 2 2

Udaipur 1 1 1 1

Percent High/Very High 27.60% 44.80% 44.80% 44.80%

Vulneraiblity Rankings - Weighted
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 The analysis of the substations impacted on July 31, 2012, yielded different 

results.  For all analyses including temperature extremes, the performance was poorer 

than the land use and betweenness combination.  One possible reason for this is the 

second day of the blackout was indicative of an already degraded system, which may 

just be indicating additional vulnerabilities in the system.  The weighted and the evenly 

weighted combinations performed exactly the same, identifying 31.1% of the 

substations impacted on July 31, 2012.  The weights for the weighted combinations are 

the same as the ones used for the July 30
th

 analysis.  The first day of the blackout (July 

30
th

) was probably more indicative of what vulnerabilities were present in a system that 

is operating at a fairly normal capacity.   

 As stated in previous sections, the accuracy percentage metric helps to explain 

omission errors, while commission errors in this type of predictive model are difficult to 

assess. Traditional commission error calculations increase as the number of variables 

increase (from approximately 5% for betweenness alone to over triple the error for the 

combination of betweenness and land use).  While these commission errors increased, it 

is not an accurate metric, as for the commission errors indicate incorrect assessments of 

a cell’s classification (in this case incorrectly identifying a cell as vulnerable when it is 

not).  The validation data is only available for one event, and just because a particular 

substation was not impacted by this particular event, does not mean that it is not 

vulnerable.  While the event likely exploited existing vulnerabilities in the Indian Grid, it 

may not have exploited them all, which makes it easier to calculate an error of omission 

versus and error of commission for this dissertation model. 
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4.6. Statistical Analyses 

 The majority of these analyses were conducted based on pairwise comparisons 

and visual interpretation of how each combination performed.  How did the results of 

the combinations results compare with statistical tests?  Was the reduction of the 

variables consistent with a factor analysis?  Are any of the models statistically different 

from using betweenness alone?  These questions can be answered with two statistical 

tests: a Principal Component analysis  and an Analysis of Variance (ANOVA). 

4.6.1. Principal Component Analysis 

 Factor analyses indicated where there were redundancies in the data used. A 

Principal Component Analysis was conducted on the variables of betweenness, land use, 

additional critical assets, population, natural hazards (earthquakes, landslides, and 

cyclones), and temperature extremes.  There were three resulting components, with the 

first component explaining 29.8% of the variance, the second explaining 22.8% of the 

variance, and the third explaining 15.9% of the variance.  The first component was most 

heavily loaded on the temperature extremes, landslide frequencies, and earthquake 

frequencies, making this the “natural hazard and climate change” component.  The 

second component was most heavily loaded on land use, additional critical assets, and 

population, making this the “people” component.  The final component was most 

heavily loaded on cyclone frequency and betweenness, making this the “structural 

demand” component.  Table 4.24 is the component matrix.  This analysis corresponds to 

the highest performing combination of variables: land use (“people”), betweenness 

(“structure”), and climate extremes (“natural hazard and climate change”). 
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Table 4.24: Component matrix for the Principal Component Analysis. 

 Component 1 Component 2 Component 3 

Betweenness -0.103  0.277  0.710 

Land Use -0.196  0.618 -0.306 

Add’l Critical Assets -0.089  0.825  0.077 

Population  0.096  0.807  0.213 

Temperature Extremes  0.853 -0.130  0.026 

Cyclones -0.056 -0.138  0.773 

Landslides  0.917 -0.017 -0.068 

Earthquakes  0.865 -0.016 -0.132 

 

4.6.2. ANOVA 

 For the ANOVA, all of the substations involved in both days of the blackout (July 

30 and 31
st

) were combined for one analysis for a total of 58 substations.  There was a 

statistically significant difference between variable combinations as determined by a 

one-way ANOVA (F(8,504) = 3.11, p = 0.002).  Of most interest was if the best 

performing models providing statistically significant differences from using betweenness 

alone.  A Tukey post-hoc test revealed there were no statistically significant differences 

between any of the best performing combinations (betweenness alone; land use and 

betweenness; betweenness, land use, and population; betweenness, land use, 

population, and additional critical assets; betweenness, land use, and temperature 

extremes; betweenness, land use, and natural hazards; and betweenness, land use, 

natural hazards, and temperature extremes) and betweenness alone.  However, the 

best performing combination (betweenness, land use, and temperature extremes from 

July 30
th

) was the most significant of the not statistically significant combinations (p = 

0.247).     
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4.7. Sensitivity Analyses 

 When performing any kind of spatial or weighted analysis, a sensitivity analysis is 

a necessary part of understanding how the model behaves and should be used.  This 

analysis conducted sensitivity analyses with regards to scope and weights. 

4.7.1. Weight Sensitivity Analysis 

 Each combination included weighted and evenly weighted variables.  

Interestingly, in most cases, the performance of the weighted combinations was either 

poorer or not better than the evenly weighted combinations.  With regards to the two 

variable combinations, weights reduced the performance with regards to the case study.  

However, with the three and four-variable combinations, the performance increased, 

though not by many percentage points with regards to the accuracy metric.  Also, this 

increase in accuracy did not provide the same level of accuracy that the land use – 

betweenness (best performing) comparisons provided.      

 When performing analyses with AHP, the weights of the variables must add up 

to 1.  This makes performing traditional sensitivity analyses difficult.  To counter this, 

pairwise comparisons had their weights varied in five weighting schemes.  The weighting 

schemes included weights of 0.1 and 0.9 weights, 0.166 and 0.833 weights, and 0.5 and 

0.5 weights (even).  This includes large changes in weights (0.5 to 0.1, for instance) and 

small changes in weights (0.1 to 0.166, for instance).  The performance was determined 

by the accuracy metric (percentage of substations affected by the July 30, 2012, 

blackout that were ranked as having high or very high vulnerabilities by any given 

weight and variable combination) (Figure 4.17).  For each of the pairwise comparisons, 
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the greatest percentage of substations identified was with the evenly weighted 

combinations. In some cases, the highly weighted betweenness or land use had 

relatively high performance; however, this accuracy still did not have greater accuracy 

than the evenly weighted combinations.  This analysis proved that weights did make a 

difference in the performance of this dissertation model, and the model was affected by 

changes in these weights. Interestingly, the evenly weighted combinations typically 

outperformed its weighted counterparts, which would take out much of the subjectivity 

on the part of the user when trying to determine weights for the model.     
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Figure 4.17: Graphic depiction of the variation in performances when weights are 

varied. 

 

4.7.2. Spatial Sensitivity Analysis 

 As stated earlier, in addition to assessing the sensitivity of the weights to 

changes, it was also important to assess changes in scope.  To accomplish this, the 

northern electrical grid region of India was analyzed separately from the entire grid. The 

grid was resampled to include only the substations and transmission lines within the 
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region; however connections to the other regions were included.  All other data was 

also reanalyzed to see differences in the performance of the best performing 

combinations.  The combinations analyzed were land use and betweenness; population 

and betweenness; land use, population, and betweenness; land use, betweenness, and 

natural hazards; Land use, betweenness, and temperature extremes; and land use, 

betweenness, natural hazards, and temperature extremes.  These combinations were 

evenly weighted, for as shown by the sensitivity analysis in the prior section, evenly 

weighted combinations had the highest accuracy.    

 The results of the best performing combinations for July 30, 2012, from the 

analyses of the entire grid performed similarly overall for only the northern grid.  While 

the overall percentages were similar, the individual rankings of the substation service 

areas varied.  Table 4.25 describes the number and percentage of substations that 

remained the same.  The percentage for the high and very high vulnerability substations 

that remained the same was calculated by taking the number of substations that 

remained in either the high or very high vulnerability ranking at both spatial scales and 

dividing that by the total number of high or very high vulnerability substations found in 

the northern region only analysis.  The amount of substations that retained the same 

ranking as the entire grid analysis ranged from about 16 percent to about 37 percent 

(Table 4.25).  Substations that had high or very high vulnerability rankings with the 

entire study area were not considered vulnerable when analyzing the northern region 

alone.  The amount of substations that retained a high or very high vulnerability ranking 

also varied from 0 percent to about 83 percent (Table 4.25). The best performing 
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combinations were the betweenness and land use combination (52.6%); betweenness, 

land use, and natural hazards combination (68.4%); and betweenness, land use, and 

climatic extremes combination (57.9%).  All of the substitutions with high and very high 

vulnerabilities in the betweenness and land use combination were also ranked with high 

and very high vulnerabilities in the other two better performing combinations.  Of 

course the combination including natural hazards was inclusive of the most substations; 

however, there was one substation identified as high or very highly vulnerable in the 

climatic extremes combination that was not identified as such in the natural hazards 

combination (Table 4.26). 

 

Table 4.25: Consistency between analyzing the Northern Region Grid for India and       

the entire study area. 

 

 

 

 

 

Betweenness
Land Use - 

Betweenness

Population - 

Betweenness

Land Use - 

Population - 

Betweenness

Natural 

Hazards - 

Land Use - 

Betweenness

Temperature 

- Land Use - 

Betweenness

Temperature - 

Natural Hazards - 

Land Use - 

Betweenness

# of Substation 

Ranking the Same
5 (26.0%) 4 (21.0%) 3 (15.8%) 7 (36.8%) 4 (21.0%) 6 (3.16%) 7 (36.8%)

# of High/Very 

High Vulnerability 

Rankings remaing 

in High/Very High 

Category

2 (33.3%) 3 (30.0%) 2 (25.0%) 0 (0%) 3 (30.0%) 6 (54.5%) 5 (83.3%)

# of Substation 

Ranking the Same
12 (42.9%) 7 (25.0%) 8 (32.0%) 15 (53.6%) 7 (25.0%) 5 (17.8%) 15 (53.6%)

# of High/Very 

High Vulnerability 

Rankings remaing 

in High/Very High 

Category

3 (33.3%) 6 (30.0%) 6 (37.5%) 3 (30.0%) 6 (30.0%) 7 (31.8%) 7 (31.8%)

30-Jul

31-Jul
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       Table 4.26: Vulnerability rankings for the Northern Region for July 30, 2012. 

 

 

 Similar results were observed in the July 31, 2012 rankings.  Once again, the 

performance was relatively similar to the performance of the combinations when 

applied to the entire study area.  The overall performance was better than that of the 

entire grid, identifying more substations as having a high or very high vulnerability.  The 

only difference between July 30 and July 31 was that the natural hazards and climate 

extremes had the same performance with regards to substations identified as having a 

high or very high vulnerability (Table 4.27). 

 

 

 

Substation Betweenness
Land Use - 

Betweennness

Population - 

Betweenness

Land Use - 

Population - 

Betweenness

Land Use - 

Betweenness - 

Natural Hazards

July 30 Temps 

with Land Use - 

Betweenness

July 30 Temps 

with Land Use - 

Betweenness 

and Natural 

Hazards

Agra (PG) 2 3 2 2 3 2 2

Balia 1 4 4 4 4 4 3

Ballabarh (BBMB) 2 4 3 3 4 3 2

Bareilly 2 4 2 2 4 4 3

Bawana 5 5 5 4 5 5 3

Bhinmal 1 1 1 1 3 3 3

Chittorgarh 2 2 2 2 2 2 2

Gorakhpur (PG) 2 3 3 2 3 4 3

Heerapura 5 5 5 3 4 5 4

Jaipur (PG) 5 5 5 3 4 5 4

Kanpur (PG) 5 5 5 5 5 5 4

Kota 3 3 3 2 3 2 2

Meerut 5 5 5 4 5 5 4

Rishikesh 1 1 3 2 5 4 5

Roorkee 3 4 4 3 4 4 3

Samaypur 4 4 4 2 4 3 2

Sanchore 1 1 1 1 4 1 3

Tehri 1 1 2 2 5 4 5

Udaipur 1 1 2 2 1 3 2

Percent High/Very High 31.60% 52.60% 42.10% 21.10% 68.40% 57.90% 31.60%

Vulneraiblity Rankings - Northern Region
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      Table 4.27: Vulnerability rankings for the Northern Region for July 31, 2012. 

 

 

The spatial sensitivity analysis identified the importance of the spatial scope with 

which the analysis is conducted.  The vulnerabilities of the substations change with the 

scope they are being analyzed at (Figure 4.18).  It was important to analyze the entire 

grid to know the vulnerabilities of the system as whole, but local vulnerabilities were 

also important.  Since the Indian electrical grid is a regional grid, comprised of five grids 

nationally, and the fact that the electrical grids were developed at the state level, make 

it important to analyze the grids at these local scales.  Analyzing the grids at regional 

scales allow decision-makers to determine what vulnerabilities there are in these 

Substation Betweenness
Land Use - 

Betweennness

Population - 

Betweenness

Land Use- 

Population - 

Betweenness

Land Use - 

Betweenness - 

Natural 

Hazards

July 30 

Temps with 

Land Use - 

Betweenness

July 31 Temps 

with Land Use - 

Betweenness 

and Natural 

Hazards

Agra 5 5 5 5 5 5 4

Agra (PG) 2 3 2 2 3 2 2

Allahabad 3 5 5 5 5 5 4

Balia 1 4 4 4 4 4 3

Ballabarh (BBMB) 2 4 3 3 4 4 2

Bhiwadi 5 5 5 4 5 5 4

Dausa 3 3 4 2 4 4 4

Debari 1 1 2 2 1 1 2

Greater Noida 1 4 4 4 4 4 2

Gorakhpur (PG) 2 3 3 2 3 3 3

Jaipur (PG) 5 5 5 3 4 4 4

Jodhpur 4 5 5 4 5 5 4

Kaithal 4 5 4 3 4 4 3

Kaithal (400 kV) 3 4 3 2 4 4 3

Kankroli 1 1 1 1 1 1 2

Kanpur (PG) 5 5 5 5 5 5 4

Kishenpur 4 4 4 2 5 5 5

Koteshwar 1 1 2 2 5 5 5

Maler Kotla 3 4 3 2 4 4 3

Maharani Bagh 3 5 5 5 5 5 4

Mandaula 5 5 5 4 5 5 4

Panki 3 5 4 4 4 4 3

PG 4 5 4 3 4 4 3

PG Kankroli 2 2 3 2 2 2 3

Rewari 3 4 3 2 4 4 3

Samaypur 4 4 4 2 4 4 2

Suratgarh 2 2 3 2 2 2 2

Wagoora (PG) 2 4 2 2 5 5 4

Percent High/Very High 35.80% 71.40% 57.10% 35.70% 78.60% 75.00% 42.90%

Vulneraiblity Rankings
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systems before they were linked to the other states and regions to create a national 

grid.  This sensitivity analyses demonstrates the need for analyzing electrical grids at a 

variety of different levels.     

   

 

 Figure 4.18: Comparison of only looking at the northern region to looking at the   

 entire study area grid system. 

 

4.8. Summary 

 This research developed and tested a modeling framework for energy grid 

vulnerability on the Indian grid, utilizing the July 30 and 31, 2012 blackout as a case 

study.  The case study involved three approaches: 1) using the betweenness metric only; 
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2) using betweenness, land use, population, and additional critical assets; and 3) utilizing 

land use, betweenness (best two performing variables), and climatic data.  Overall, this 

case study indicated that betweenness was not adequate on its own to identify 

vulnerabilities in the electrical grid.  The best performing combination from the second 

approach, including pair-wise comparisons, three-way variable comparisons, and all four 

variables, was the combination of land use and betweenness, evenly weighted.  The 

land use and betweenness combination was able to identify 44.8% and 46.6% of the 

substations involved in July 30 and 31
st

 blackout as high or very highly vulnerable, versus 

27.6% and 24.4% respectively for the betweenness only measure.  The addition of 

temperature extremes improved the performance to 51.7% of the substations involved 

on the first day (July 30
th

) as having a high or very high vulnerability ranking.  While 

there were no statistically significant differences between the mean values of the results 

of each combination, the results do indicate that variables other than just betweenness 

metric value can help indicate substation vulnerability. 

 Additional analyses were conducted on the sensitivity of the results to various 

changes in parameters including sensitivity of the weights and sensitivity of the model 

to changes in spatial scope.  Both analyses show that these changes do make a 

difference in how the model performs.  However, the results did show that not 

weighting the variables, or leaving the weights even, had the highest performance.  The 

variations in model performance at various spatial scales also indicate the importance of 

running the model at various spatial scopes.  This is true in any network or spatial 

analysis; when analyses are performed at a different spatial scope, different 



www.manaraa.com

158 

 

vulnerabilities may arise than were present when performing the analyses for the entire 

study area.   

 A smaller case study was also performed on the Miami area.  This additional 

analysis shows the applicability of the model both to developed countries and less 

developed countries. 
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CHAPTER V 

CONCLUSIONS 

 The abundance of blackouts occurring around the world suggests a lack of 

understanding, modeling, and mitigation for electrical grid vulnerability.  Whether the 

lack of understanding of grid vulnerability is due to a lack of adequate data or a lack of 

appropriate methods is still unknown.  This research developed a new framework for 

identifying electrical grid vulnerabilities. 

Research Objectives 

 One of the major objectives was to identify the relevant representations of the 

factors, the relationships between these factors and the appropriate data model to 

represent them.  This research utilized a variety of different characteristics including: 

population, betweenness, land use, number of critical assets, temperature extremes, 

and natural hazard frequency (specifically earthquakes, landslides, and cyclones). These 

factors had raster representations, and were reclassified into raster datasets of similar 

units (vulnerability units) at the service area level (appropriate unit of analysis).  By 

giving the factors a raster representation and the same units, comparing between the 

attributes to see which combinations were most useful for identifying vulnerabilities in 

the electric grid was much easier.   
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Research Questions 

The developed electrical infrastructure vulnerability modeling approach was 

implemented an used to answer the dissertation research questions.  Each question is 

revisited in this section and the outcomes noted. 

1. What are the differences that arise from analyzing network vulnerability using 

the new integrated framework versus graph theory alone? 

There were definitive differences in the performances of the model framework with 

the addition of geographic variables.  The use of betweenness alone in the model 

enabled approximately 28% and 25% of the substations to be ‘correctly’ identified as 

vulnerable on  July 30
th

 and July 31
st

 , respectively.  The best factor performers overall 

were the land use and betweenness combination (accounting for approximately 45% of 

the substations impacted by the blackout) and the land use, betweenness, and climatic 

extremes (accounting for approximately 50% of the substations impacted) (Table 5.1).  

Despite the increase in the percentage of substations identified as having high or very 

high vulnerabilities, none of these differences between betweenness alone and the 

factor combinations were statistically significant.  It is interesting to note that all of the 

highest performing combination of factors included betweenness, which shows that 

betweenness is important for identifying vulnerable nodes.  However, as stated in the 

literature, betweenness is misleading when viewed without ancillary information.  This 

is evidenced by the fact that the combinations including these ancillary factors 

outperformed using betweenness alone. 
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Table 5.1: Summary of combination results for the 2012 Indian Blackout. 

 

 

2. What are the vulnerable nodes in Southeastern Asia? 

Using the land use and betweenness combination, the most vulnerable substations 

in the region were concentrated near the urban areas and the Eastern part of the 

country.  There were a total of 90 substations (9.5%) in the study region that were in the 

very high vulnerability category.  Substations near cities such as New Delhi, Chennai, 

Combination

Percent of Substations 

with High or Very High 

Vulnerability on July 30, 

2012

Percent of Substations 

with High or Very High 

Vulnerability on July 

31, 2012

Betweenness 27.60% 24.40%

Land Use - Population 20.70% 17.80%

Land Use - Other Critical Assets 13.80% 15.60%

Land Use - Betweenness 44.80% 46.60%

Population - Other Critical Assets 10.30% 15.60%

Population - Betweenness 37.90% 42.20%

Other Critical Assets - 

Betweenness 27.60% 28.90%

Land Use - Population - Other 

Crtical Assets 3.40% 11.10%

Land Use - Population - 

Betweenness 20.70% 17.80%

Land Use - Other Critical Assets - 

Betweenness 17.20% 22.20%

Population - Other Critical Assets - 

Betweenness 17.20% 24.40%

Betweenness - Land Use - 

Population - Other Critical Assets 27.60% 24.40%

Betweenness - Land Use - Natural 

Hazards 44.80% 46.60%

Land Use - Betweenness - July 30 

Temperature Extremes 51.70% 31.10%

Land Use - Betweenness - Natural 

Hazards -July 30 Temperature 

Extremes 51.70% 31.10%
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Mumbai, Bangalore, and Hydrabad were also ranked with very high vulnerability.  The 

substations with the highest vulnerability scores were Biharshariff, Malda, Samaguri, 

Gwalior, Tandikonda, and Kalwa.  Importantly, Gwalior, one of the substations involved 

in the initiating event on both days of the blackout (loss of the Gwalior – Bina 

transmission line) was one of the substations having the highest vulnerability.  There is 

also a belt from west to east in northern India of vulnerable substations that can be 

explained by the abundance of irrigated cropland, urban areas, and susceptibility to 

climate change.  There were no highly vulnerable substations in Bhutan or Nepal.  This 

may be due to the fact that neither country serves their entire population with regards 

to the electrical grid.  In fact, Bhutan has been working toward rural electrification, but 

the terrain makes it difficult to develop the infrastructure (ADB 2012).  Additionally, the 

grid networks in Bhutan and Nepal are not nearly as complex or extensive as India’s grid.   

There were also geographic differences in the manifestation of vulnerabilities on 

the landscape.  Figure 5.1 shows a comparison of betweenness vulnerability with the 

highest performing combination: betweenness and land use.  The betweenness 

vulnerability is spottier and less geospatially based, as it takes into account only the 

structure of the grid.  This was a stark contrast to the betweenness and land use 

combination, where there were clear patches of very high vulnerability corresponding to 

population centers and areas where irrigated cultivation is prevalent.  Interestingly, 

though the majority of combinations in the scenarios showed Maharani Bagh to be 

vulnerable, the betweenness alone scenario showed that this substation was not 

vulnerable.  Maharani Bagh is a substation serving the Delhi area, and was one of the 
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substations impacted on July 31, 2012.  This was an important difference between the 

betweenness-only vulnerability rankings and the betweenness and land use 

combination vulnerability rankings.  All of the substations in and around the Delhi 

metropolitan area were considered to have a low vulnerability in the betweenness-only 

rankings; however, with the addition of land use, those substations became vulnerable.  

This was an instance where there would be a major difference in policy decisions 

between the two models.  If policy-makers were only viewing the betweenness-only 

vulnerability rankings, the Delhi area would not be seen as an area needing additional 

protection or care; however, in the betweenness and land use rankings, a policy-maker 

would be more willing to invest in protection mechanisms for the Delhi area.          
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Figure 5.1: Comparison of results from betweenness metric alone analysis and        

the betweenness and land use combination. 

 

Another instance where this type of holistic framework could be of use to policy 

makers was with regards to those substations whose vulnerability rankings became high 

or very high only after the addition of temperature extremes or natural hazard 

frequency, such as Tehri and Rishikesh.  Results from the research in this dissertation 

may bring critical infrastructure vulnerabilities to climate change to the forefront of 

policy-makers decisions with regards to upgrading and protecting their assets that are 

vulnerable in these contexts.   

3. What types of evaluation methods are applicable? 

Most vulnerability models of electrical infrastructure (and perhaps most 

vulnerability models in general) are presented without a validation or even suggesting 
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methods for evaluating model performance. This research presented various 

mechanisms for evaluating this framework, including accuracy assessments, sensitivity 

analyses, and comparisons to real world events (2012 Indian Blackout).     

Contributions 

 While drawing on prior research from a variety of disciplines, this research 

makes considerable contributions to both the Geographic Information Science 

(GIScience) and CIP literatures.  These contributions range from new, improved tools to 

new frameworks.  PoDiuM, an advancement in how service areas are calculated in CIP 

modeling, reduces processing time, and streamlines the data flow in a GIS.  PoDiuM 

improves on past iterations of service area calculation algorithms by improving 

processing time, while still including important attribute information (supply and 

demand) and integrating it within a GIS environment.  Prior iterations of electrical 

service area models were calculated outside of a GIS and required laborious 

transformation before being usable in spatial analyses.  PoDiuM also exhibits an 

acceptance by federal agencies as demonstrated by its use in emergency management 

modules for helping determine how many customers are impacted by electrical outages 

by a natural hazard.   

Additionally, the integrated framework is the first introduction of geographic 

variables for critical infrastructure vulnerability assessments.  This dissertation research 

identifies the inability of current graph metrics to identify all the vulnerabilities in 

electrical infrastructure.  Hines et al. (2010) indicated that one must be careful in 

viewing electrical infrastructure vulnerabilities only in the context of the structure of the 
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graph, as ancillary data (e.g. population, critical facilities other than electrical) are also 

important in analyzing vulnerabilities in these networks.  This research shows the 

importance of this ancillary data, especially land use, climatic extremes, and natural 

hazards.  Most of these data have been absent from previous analyses of critical 

infrastructure, and this research indicates that more should be done to incorporate 

these factors into such analyses for a better understanding of the electric grid. This 

research also demonstrates the importance of place and geography in analyzing critical 

infrastructure. The importance of geospatial aspects of critical infrastructure 

vulnerability is often absent from CIP research.  These results, highlighting the 

importance of these ancillary variables, can help inform policy decisions should they be 

implemented by government agencies.          

This dissertation research also makes contributions to the GIScience literature.  

This framework improves on previous models, as when implemented, is faster than 

other models, as it is more cohesive.  The user is not required to use various different 

models in different systems, which can reduce preprocessing and time spent entering 

resulting data from one model into another model.   Additionally, this research also 

highlights weaknesses in existing frameworks in the CIP literature.  One additional 

advancement of this dissertation research to the GIScience open source community is 

the development of a framework for developing open source energy network datasets. 

This work is also being shared among the critical infrastructure protection 

communities, from federal agencies to state governments to academics.  The 

framework, software, and data are incredibly sharable and easily transferred from 
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organization to organization.  Federal agencies particularly interested in this research 

include the Department of Defense and the Department of Energy.     

 Future Work 

 The research findings hihglight the importance of geospatial information in the 

analysis of critical infrastructure vulnerabilities, but more research must be conducted.  

Despite the increase in performance over betweenness alone, the highest accuracy was 

only 51%, which is not an incredibly high accuracy rate.  It is inevitable that this 

dissertation research did not cover the entire expanse of possible factors that could be 

included in a geospatial vulnerability model for critical infrastructure.  More research 

should be conducted regarding the inclusion of different factors for understanding the 

dynamics of critical infrastructure vulnerability.  Some examples of factors that might 

contribute to electrical infrastructure vulnerability include ownership of the substation 

and socio-cultural factors.  Ownership of the substation may be indicative of loyalties, 

upkeep, and a variety of other concerns of extreme importance to a substation’s 

vulnerability.   

 This research also indicates the importance of exploring climatic variables 

related to climate change and their influence on critical infrastructure vulnerabilities.  

This dissertation research clearly illustrates the importance of temperature extremes on 

assessing grid vulnerability; however, there are likely a number of additional climatic 

variables also of importance such as precipitation and drought.  Future research should 

assess these climatic indicators and climate change in relation to grid vulnerability and 
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how best to incorporate them into CI models.  This dissertation research offers a 

beginning framework, but just a beginning.   

 More extensive work should be done to assess the viability of this research on 

other study areas including both developed and less developed countries.  Also, testing 

this model in different areas can help determine if there are unique differences in what 

factors contribute to grid vulnerability in different countries.  With access to electric 

company service area data the PoDiuM model could be validated.   

Additionally, research should be conducted on the impact of spatial resolution 

on the results of this framework as finer spatial resolution data becomes available. Tests 

utilizing critical infrastructure networks other than electrical networks would also be an 

interesting addition to the literature to determine if all critical infrastructure networks 

have similar results.   

Improvements could also be made to the framework to extend its usability.  

Firstly, it could also be modified to make it more dynamic.  Right now the model is static 

and provides a snapshot in time.  Making this framework into a dynamic model would 

enable the users to remove the most vulnerable node and re-run the model to see how 

the grid vulnerabilities change with the loss of that asset.  Another improvement to the 

framework would be the integration of a risk component.  The framework in its current 

form only addresses substation vulnerability, not risk.  This framework could be 

extended as described in Figure 5.2 to incorporate the concept of risk. 
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  Figure 5.2: Incorporation of risk to the vulnerability framework. 

 

 Additional improvements to the tools developed by this research could also be 

explored in the future.  As stated in Chapter 3, PoDiuM could be extended to involve the 

evolution of the grid to help accommodate current un-served demand or future 

increases in demand.  The AHP tool could also be improved to allow the user more 

flexibility in how to utilize the weights generated by the pairwise comparisons.  

Currently, the tool only accommodates a weighted linear combination, or weighted sum 

approach, but other methods may be exploited in the future.  
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